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Abstract

The mechanical properties of very small systems are often strikingly different from

the properties of everyday objects. As one considers ever smaller objects, thermal

fluctuations, and then quantum fluctuations, start to be important. In this thesis I

explain some unusual nanoscale mechanical effects, and predict some new effects.

The bulk of the thesis is devoted to calculating the forces between bodies that

are closely spaced, but not touching. These van der Waals forces have been studied

in detail for bodies in thermal equilibrium. Most of the world is not in thermal

equilibrium, and van der Waals forces in this regime are very different from their

equilibrium cousins. In contrast to equilibrium forces, nonequilibrium forces are much

stronger and may show chemical specificity. There is a friction associated with the

van der Waals force between bodies in relative motion. When the bodies are at

different temperatures, this friction may be negative. Intermolecular forces with one

molecule excited are far stronger than ground-state forces and may be attractive or

repulsive. Any optical effect in matter modifies the forces between the constituent

molecules.

The second part of this thesis is on solitonic kinks in fibrillar materials (e.g.

polymers, actin bundles, microtubules, carbon nanotubes). All of these materials

may support stable kinks, and these kinks play an important role in determining the

mechanical properties; often more important than the detailed chemical makeup of

the materials.
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Introduction

This thesis is a theoretical examination of some unusual mechanical effects that occur

in very small objects (ranging in size from single atoms to cellular organelles). The

problems studied range from atomic collisions to the shape of an organelle in the sperm

of horseshoe crabs. The solutions are united by a common approach: I strive to use as

few material parameters as possible while preserving the essential physics. This often

means identifying quasiparticle modes whose motion encompasses that of a great

many degrees of freedom. This analytical approach runs counter to current trends in

massive atomistic simulations. What is lost in detail is gained in understanding.

The first two chapters are devoted to formalism. The question is: given two

quantum systems with unknown properties, is it possible to perform a set of mea-

surements on the individual systems from which one can predict the outcome of a

measurement when the two systems interact with each other? The answer to this

question is yes, provided one allows a sufficiently broad class of measurements on the

individual systems. I present a simple procedure for calculating the properties of a

coupled quantum system in terms of properties of its constituent parts.

Chapters 3, 4, and 5 apply the formalism to the problem of intermolecular forces in

systems far from thermodynamic equilibrium. In Chapter 3 I consider two molecules

at different temperatures and subject to a time-dependent coupling. The van der

1
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Waals force may be dramatically enhanced when molecules are at different tempera-

tures, and the force is dissipative for molecules in relative motion. Perhaps the most

surprising result of this thesis is that under certain conditions of temperature and

molecular structure, the van der Waals friction may become negative. Negative fric-

tion does not violate the laws of thermodynamics, because it always occurs in systems

simultaneously in contact with hot and cold reservoirs.

Chapter 4 is on the force between two molecules, one of which is excited. The

force may be attractive or repulsive, and is far stronger than the ground-state van der

Waals force. I suggest a simple interpretation of excited-state forces, which provides a

framework for interpreting well-known phenomena such as concentration-quenching,

and suggests ways of using optical or chemical excitation to direct the assembly of

nanoscale objects.

Any optical effect in matter at finite density modifies the forces between the

constituent molecules. This is because the same electrons mediate the optical response

and provide for the long-range intermolecular forces. In Chapter 5 I develop a method

to calculate the intermolecular force accompanying an arbitrary optical process. In

the dark, the theory reproduces the ground-state van der Waals force. Previous

attempts to develop such a theory are shown to be incorrect.

The last chapter is largely independent of the rest of the thesis. I study four exam-

ples of fibrillar nanomaterials (the Limulus acrosome, multiwalled carbon nanotubes,

DNA in an AC electric field, and a polymer in a confined geometry), and show how

sine-Gordon solitons arise in each. These sine-Gordon solitons play an important role

in determining the mechanical properties of the materials. This last chapter and the

rest of the thesis share a common ancestor, but divergent evolution has rendered the
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link obscure. Rather than trying to forge an artificial link, I present this chapter as

an interesting diversion.

All of the topics addressed in this thesis are my own ideas, but I benefited greatly

from interactions with Prof. L. Mahadevan in DAMTP and Prof. Shaul Mukamel

at the University of Rochester, NY. Professor Mahadevan early on encouraged me

to work on fibrillar materials. Section 6.2 on kinks in the Limulus acrosome and

multiwalled carbon nanotubes is the result of our collaboration. Professor Mukamel

introduced me to Liouville space superoperators and provided many helpful comments

on the material in Chapters 1-5.

The work on kinks in polymers was inspired by experiments on AC dielectrophore-

sis of DNA conducted by André Germishuizen and Dr. Christoph Wälti working in

the Chemical Engineering department under Dr. Anton Middelberg. The theoretical

development of the kink-gas and loop-gas models of polymers (Sections 6.3 and 6.4)

was done essentially in isolation, although after I had completed it Prof. Mark Warner

and James Adams provided many useful comments.

The papers describing the work in this thesis are:

• A. Cohen and S. Mukamel, “A Mechanical Force Accompanies Fluorescence

Resonance Energy Transfer (FRET),” J. Phys. Chem. A, 107 (19), 3633-3638,

15 May 2003.

• A. Cohen and L. Mahadevan, “Kinks, Rings, and Rackets in Filamentous Struc-

tures,” Proc. Natl. Acad. Sci. USA, 100, 12141-12146, 14 Oct. 2003.

• A. Cohen and S. Mukamel, “Resonant Enhancement and Dissipation in Nonequi-

librium van der Waals Forces,” Phys. Rev. Lett., 91, 233202, 5 Dec. 2003.
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• A. Cohen, “Force-Extension Curve of a Polymer in a High-Frequency Electric

Field,” Phys. Rev. Lett., 91, 235506, 5 Dec. 2003.

• A. Cohen, “Statistical Mechanics of a Polymer in a High Frequency Electric

Field”, to be submitted.

Over the past two years I also wrote two items that are not discussed in this thesis:

• A. Cohen, “Carbon Nanotubes Provide a Charge,” Science (Letter to the Edi-

tor), 300 (5623): 1235, May 23 2003.

• A. Cohen, C. T. Black, R. Sandstrom, C. B. Murray, “Scanning Probe Mi-

croscopy Tips Composed of Nanoparticles and Methods to form Same” U.S.

Patent Pending.



Chapter 1

Generalized Response Functions
(GRFs)

We consider an arbitrary quantum system subject to a perturbation. The change in

the expectation value of an internal coordinate may be calculated using linear and

nonlinear response functions. In a classical system at zero temperature, each coordi-

nate has a well-defined value, so the response functions provide a complete description

of the system. In a quantum system or a classical ensemble at finite temperature,

correlations between coordinates have a life independent of the expectation values of

the individual coordinates. Generalized response functions (GRFs) give the change

in the correlations induced by a perturbation. The GRFs characterize all measurable

aspects of a quantum system at finite temperature, and have simple expressions in

terms of time-ordered products of Liouville space superoperators. In the following

chapter we express the GRFs of a composite quantum system in terms of the GRFs

of its constituent parts.

5
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1.1 Introduction

When dealing with a complex quantum system, it is often impractical to solve the

time-dependent Schrödinger equation analytically, or even on a computer. This is not

such a tragedy, because the wavefunction, |Ψ(t)〉, is rarely of interest. The quantities

of interest are observables, given by the expectation value of a Hermitian operator,

B. The process of computing the expectation value, 〈Ψ|B|Ψ〉, discards most of the

information in the wavefunction.

To avoid unnecessary computation, it is often advisable to work directly with the

equation of motion for the observable. The closed time path Green function (CTPGF)

formalism of Schwinger [166] and Keldysh [95] does just this. The fundamental objects

of this formalism are multitime correlation functions of Hermitian operators in Hilbert

space. Judiciously chosen linear combinations of these correlation functions give the

response of an observable. Hao and coworkers applied the CTPGF formalism to

calculate nonlinear response functions [80, 116, 117]. For an extensive review of the

CTPGF, see [35].

In most real systems, the observable of interest depends on only a small number

of modes, but these modes are coupled to an infinite ensemble of modes in the en-

vironment. In condensed matter, the environmental modes correspond to phononic,

conformational, and orientational degrees of freedom, but even for molecules in vac-

uum it is impossible to escape the continuum of vacuum radiation modes, which are

responsible for spontaneous emission and the Lamb shift. It is generally undesirable

(and also impossible) to calculate the evolution of the full density matrix of the sys-

tem and bath. The bath may be incorporated by switching from Hilbert space to

Liouville space. In Liouville space one may write reduced equations of motion that
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include the effect of the bath in a self-energy. Sophisticated techniques have been

developed to calculate self-energies [137].

In this chapter we start with a purely mathematical review of nonlinear response

theory. The physics is introduced when we calculate the nonlinear response functions

in terms of multitime correlation functions of Liouville space superoperators. By

reformulating the closed time path Green function formalism with superoperators

in Liouville space, we calculate response functions that include the role of the bath

via a self energy. Then we generalize the concept of response functions to include

changes in the fluctuations of a quantity brought on by a perturbation. Many of the

familiar properties of linear and nonlinear response functions also apply to generalized

response functions.

1.2 Nonlinear response functions

Consider a causal system with a set of internal coordinates {qi} and subject to a set

of perturbing forces, {fj(t)}. The most general expression relating the expectation

value of a particular coordinate, 〈qi(t)〉, to the forces at past times is the Volterra

series

〈qi(t)〉 = 〈qi〉0 +

∫ t

−∞
R

(1)
ij (t, t1)fj(t1) +

∫ t

−∞
dt2

∫ t

−∞
dt1R

(2)
ijk(t, t2, t1)fj(t2)fk(t1) + . . . ,

(1.1)

where 〈qi〉0 is the expectation value in the unperturbed state, R(n) are as-yet-unknown

response functions, and summation over repeated indices j, k, . . . is implied. We now

define

R(n)(t, tn, . . . , t1) = 0 if max(tn, . . . , t1) > t, (1.2)
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so that the upper limits of integration in Eq. 1.1 may be set to +∞.

When a system is initially in a steady state, then the response depends only on

the intervals, τ1 ≡ t− t1, τ2 ≡ t− t2, . . . . The nth order term in Eq. 1.1 may then be

rewritten as

〈

q
(n)
i (t)

〉

=

∫ ∞

0

dτn · · ·
∫ ∞

0

dτ1G
(n)
ij...l(τn, . . . , τ1)fj(t− τn) . . . fl(t− τn), (1.3)

where the Green function is defined

G(n)(τn, . . . , τ1) ≡ R(n)(0,−τn, . . . ,−τ1), (1.4)

and the causality condition is

G(n)(τn, . . . , τ1) = 0 if min(τn, . . . , τ1) < 0, (1.5)

Taking the Fourier transform of Eq. 1.3 yields 1

〈q̃i(ω)〉 = 〈qi〉0 δ(ω) + χ
(1)
ij (ω)f̃j(ω) +

∫

dω2

∫

dω1χ
(2)
ijk(−ω;ω2, ω1)f̃j(ω2)f̃k(ω1) + . . . ,

(1.6)

where frequency-domain quantities are indicated with a (˜) and the nth order sus-

ceptibility is defined

χ(n)(−ωs;ωn, . . . , ω1) ≡
∫ ∞

−∞
dτn · · ·

∫ ∞

−∞
dτ1G

(n)(τn, . . . , τ1)e
i(ωnτn+...+ω1τ1)δ(ωs−ωn−. . .−ω1).

(1.7)

In the field of nonlinear optics, the first three susceptibilities are often denoted α(ω),

β(−ω;ω2, ω1), and γ(−ω;ω3, ω2, ω1), respectively.

For n ≥ 2, there exist many different nth order response functions that when

plugged into the r.h.s. of Eq. 1.1 yield the same l.h.s. The R(n) defined in Eq. 1.1

1Throughout this thesis we use the Fourier convention Ã(ω) = 1

2π

∫
∞

−∞
dtA(t)eiωt and A(t) =

∫
∞

−∞
dωÃ(ω)e−iωt.
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is known as the symmetric kernel [158]. Another commonly used convention is the

triangular kernel, defined by

〈

q
(n)
i (t)

〉

=

∫ t

−∞
dtn · · ·

∫ t2

−∞
dt1R(n)

ij...l(t, tn, . . . , t1)fj(tn) . . . fl(t1). (1.8)

The difference between Eq. 1.1 and 1.8 is in the limits of integration. The symmetric

kernel is invariant under a permutation of any of its last n time arguments accompa-

nied by the same permutation of its indices. Each term in Eq. 1.1 goes through all

n! sequences of the time-ordering, and thus has n! identical contributions. In Eq. 1.8

we selected the single time-ordering in which t ≥ tn ≥ . . . ≥ t1. We now define R(n)

to be zero if its time-arguments are not in this sequence, so that the upper limits of

integration in Eq. 1.8 may also be set to +∞. The symmetric and triangular kernels

are related by

R(n)(t, tn, . . . , t1) =
1

n!

∑

p

R(n)(t, tn, . . . , t1), (1.9)

where the sum is over all n! permutations of the last n time arguments of R(n). In

a time-translation invariant system, the triangular kernel is associated with a Green

function which gives the response via

〈

q
(n)
i (t)

〉

=

∫ ∞

0

dτn · · ·
∫ ∞

0

dτ1G(n)
ij...l(τn, . . . , τ1)fj(t−τn) . . . fl(t−τn−. . .−τ1). (1.10)

The existence of multiple ways to define the nonlinear response has occasionally

caused confusion. In this thesis R(n) always refers to the symmetric kernel, R(n) to

the triangular kernel, G(n) to the symmetric Green function and G(n) to the triangular

Green function.
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1.3 Superoperators in Liouville space

To imbue the response functions with physical meaning, we need to calculate the time-

evolution of a quantum system subject to a time-dependent perturbation. Consider

the Hamiltonian

H = H0 + V (t), (1.11)

where the reference Hamiltonian, H0 is time-independent and the time-dependence

of V (t) arises from an externally driven classical source with V (−∞) = 0. We will

be interested in calculating the expectation value of some observable, B, given by

〈B(t)〉.

The following notation will be used. The expectation value of an operator, 〈A〉,

is defined 〈A〉 ≡ Tr{Aρ}, where ρ is the density matrix. When the expectation value

is written 〈· · ·〉0 we are to use the unperturbed density matrix, ρ0, of the equilibrium

system at time −∞.

We introduce Liouville space superoperators and review some of their useful prop-

erties. A fuller review is given in [138]. The elements of an n × n density matrix in

Hilbert space are arranged as a vector of length n2 in Liouville space. The ordering of

elements is inconsequential provided a consistent convention is adopted. A superop-

erator in Liouville space can be represented by a matrix of dimensions n2 × n2. The

profusion of elements is no handicap because we will never write the matrix expression

for a superoperator.

Multiplication by a superoperator can implement a much wider class of trans-

formations on the density matrix than can multiplication by a regular operator. In

particular, the commutator and anticommutator can each be implemented with a sin-

gle multiplication by a Liouville space superoperator. For any Hilbert space operator
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A we define Liouville space superoperators A+, A−, AL and AR by their action on

another operator X:

Liouville Space Hilbert Space

A−X ⇔ [A,X] (1.12a)

A+X ⇔ 1

2
(AX +XA), (1.12b)

and

ALX ⇔ AX (1.13a)

ARX ⇔ −XA. (1.13b)

Relations 1.12 and 1.13 are not written as equalities because X is a vector in Liouville

space and a matrix in Hilbert space. A series of ± superoperators multiplied together

implements a series of nested commutators and anticommutators in Hilbert space.

The L and R superoperators are related to the + and − superoperators by a

simple linear transformation

A− = AL + AR (1.14a)

A+ =
1

2
(AL − AR), (1.14b)

and its inverse

AL = A+ +
1

2
A− (1.15a)

AR = −A+ +
1

2
A−. (1.15b)

The expectation value of a superoperator is obtained by evaluating the trace of the

corresponding operator expression. For any operators A and X, the following useful
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identities may be verified by applying the definitions of the superoperators and the

invariance of the trace to a cyclic permutation of its arguments:

〈AX〉 = 〈A+X〉 = 〈ALX〉 = −〈ARX〉 (1.16a)

〈A−X〉 = 0. (1.16b)

Whenever the leftmost superoperator in an expression is a (−), the expectation value

is zero because the trace of a commutator vanishes. The introduction of the +,−, L, R

superoperators may seem like a notational complication, but they greatly simplify the

expressions below.

We introduce two useful operators, T and Θ, related to time-ordering in Liouville

space. The time-ordering operator, T , takes all the superoperators to its right and

arranges them from left to right in order of decreasing time argument. Multiplying by

T on the left allows us to manipulate superoperators as numbers, e.g. replacing time-

ordered exponentials by regular exponentials without worrying about commutations.

The unit-step operator in Liouville space, Θ, is 1 if all the superoperators to its right

are in a time-ordered sequence, and 0 otherwise.

The density matrix evolves under the Liouville equation:

ρ̇ = − i

~
H−ρ. (1.17)

In reduced descriptions (e.g. a molecule coupled to a bath) we relax the constraint

that the Liouvillian, H−, implements a commutator. Every Hamiltonian has a corre-

sponding Liouvillian, but in reduced descriptions the Liouvillian has no corresponding

Hamiltonian. Phenomena involving relaxation and dissipation can only be calculated

in Liouville space.
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The Liouville equation has the formal solution

ρ(t) = U(t,−∞)ρ0, (1.18)

where the Liouville space time evolution operator is

U(t,−∞) = T exp

(

− i

~

∫ t

−∞
H−(t′)dt′

)

. (1.19)

The expectation value of our observable, B is thus

〈B(t)〉 = 〈B+U(t,−∞)〉0 . (1.20)

Assuming we can solve for, or measure, the dynamics subject to H0 alone, it makes

sense to treat the term H0 explicitly and V (t) as a perturbation. This is accomplished

by switching to the interaction picture. Superoperators in the interaction picture

(denoted with a (̂ )) are related to their counterparts in the Schrödinger picture by:

B̂+(t) ≡ exp

(
i

~
H0−t

)

B+ exp

(

− i

~
H0−t

)

(1.21a)

V̂−(t′) ≡ exp

(
i

~
H0−t

′
)

V−(t′) exp

(

− i

~
H0−t

′
)

, (1.21b)

so that the time-evolution superoperator in the interaction picture becomes

Û(t,−∞) = T exp

(

− i

~

∫ t

−∞
V̂−(t′)dt′

)

. (1.22)

The expectation value 〈B(t)〉 is given by

〈B(t)〉 =
〈

B̂+(t)Û(t,−∞)
〉

0
. (1.23)

Eq. 1.23 is typically evaluated by expanding Û(t,−∞) in a power series in V̂−, so

〈B(t)〉 =
〈
B(0)(t)

〉
+
〈
B(1)(t)

〉
+ . . .. The nth term in this series is

〈
B(n)(t)

〉
=

1

n!

(−i
~

)n ∫ t

−∞
dtn· · ·

∫ t

−∞
dt1

〈

T B̂+(t)V̂−(tn) . . . V̂−(t1)
〉

0
(1.24)
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Outside the indicated domain of integration in Eq. 1.24, the T guarantees that the

leftmost superoperator in the brackets is a (−). The integrand then goes to zero

because the trace of a commutator vanishes (Eq. 1.16b). Thus the limits of integration

may be set to ±∞, with the burden on the integrand to be zero wherever appropriate.

To relate Eq. 1.24 to the definition of the response function (Eq. 1.1), consider

a system with a set of internal coordinates, {qi}. The observable of interest is the

displacement of one coordinate, 〈qi(t)〉. Any perturbation that acts linearly on the

coordinates can be decomposed as V (t) = −
∑

j fj(t)qj , where fj(t) are scalars cor-

responding to classical external forces and the initial (−) is a convention. We may

take the fj(t) outside of the expectation value, so that

〈

q
(n)
i (t)

〉

=
1

n!

(
i

~

)n ∫ t

−∞
dtn· · ·

∫ t

−∞
dt1 〈T q̂i+(t)q̂j−(tn) . . . q̂l−(t1)〉0

×fj(tn) . . . fl(t1), (1.25)

where, as before, summation over repeated indices is implied. Comparison of Eq. 1.25

with Eq. 1.1 yields the response function:

R
(n)
i,j,...,l(t, tn, . . . , t1) =

1

n!

(
i

~

)n

〈T q̂i+(t)q̂j−(tn) . . . q̂l−(t1)〉0 . (1.26)

Eq. 1.26 is the most compact and useful expression of the response function, so we

comment on its structure. A (+) superoperator can be thought of as implementing a

measurement and a (−) superoperator can be thought of as implementing a pertur-

bation by an external source. The general structure of a response function is a (+)

at the measurement time, followed by a series of (−)’s at the interaction times.

Eq. 1.26 can also be written in the L,R representation by making the substitutions
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q̂+ → q̂L (Eq. 1.16a) and q̂− → q̂L + q̂R (Eq. 1.14a), so that

R
(n)
i,j...,l(t, tn, . . . , t1) =

1

n!

(
i

~

)n∑

{ηα}
〈T q̂iL(t)q̂jηn

(tn) . . . q̂lη1
(t1)〉0 ηα = L,R,

(1.27)

where the sum is over all 2n sequences {ηn, . . . , η1}. Each such sequence is called a

Liouville space pathway. Double-sided Feynman diagrams provide a convenient way

to calculate and keep track of Liouville space pathways [137].

The triangular kernel may also be extracted from Eq. 1.24. Evaluating the time-

ordering operator cancels the initial factor of 1
n!

and yields

〈
B(n)(t)

〉
=

(−i
~

)n ∫ t

−∞
dtn· · ·

∫ t2

−∞
dt1

〈

ΘB̂+(t)V̂−(tn) . . . V̂−(t1)
〉

0
, (1.28)

whence the triangular kernel is

R(n)
i,j,...,l(t, tn, . . . , t1) =

(
i

~

)n

〈Θq̂i+(t)q̂j−(tn) . . . q̂l−(t1)〉0 . (1.29)

Eq. 1.29 is equivalent to the possibly more familiar Hilbert space expression:

R(n)
i,j,...,l(t, tn, . . . , t1) = θ(t, tn, . . . , t1)

(
i

~

)n

Tr{q̂i(t)[q̂j(tn), . . . , [q̂l(t1), ρ0]]}, (1.30)

where the multivariate Heaviside step function θ(t, tn, . . . , t1) = 1 if t > tn > . . . > t1

and 0 otherwise. Hilbert space operators in the interaction picture are defined in

analogy to Eq. 1.21, q̂(t) ≡ eiH0t/~qe−iH0t/~.

1.4 Multitime observables

We now introduce a generalization of the response function formalism. First some

comments about measurements. We somewhat cavalierly associated the physical
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operation of taking a measurement with the mathematical operation of calculating

〈qi(t)〉 ≡ Tr{qiρ(t)}. What does this mean?

A quantum system may exist in a superposition of states, so measuring an ex-

pectation value, 〈Ψ(t)|qi|Ψ(t)〉, does not completely specify the state. A classical

ensemble at finite temperature may exist in any of a great many microstates, so mea-

suring an ensemble average, qi(t), does not completely specify the state–even if qi is a

classical variable. When we construct a Liouville operator that includes a self-energy,

the resulting density matrix, ρ(t), already includes the ensemble average. Calculating

Tr{qiρ(t)} takes an expectation value in a double sense: it is the ensemble average of

the quantum expectation value of qi. Both types of averaging discard information.

We can regain some of the lost information from measurements of correlations

between coordinates, 〈qi(t2)qj(t1)〉, 〈qi(t3)qj(t2)qk(t1)〉, etc. Measurements of fluctu-

ations constitute a special class of correlation measurements, where i = j = . . . and

t1 = t2 = . . .. As an example of the usefulness of correlation measurements, let the

coordinate q describe the displacement of a particle in a 1-dimensional harmonic well.

A measurement of 〈q〉 yields zero, which is not very informative. However, a mea-

surement of 〈q2〉 tells us the steepness of the potential. This is true for a quantum

system at zero temperature, a classical ensemble at finite temperature, and a quan-

tum ensemble at finite temperature. Because these multitime correlation functions

provide additional information about our system, we would like to know how they

change in response to a perturbation.

It is necessary to exercise caution in defining multitime observables. A product

of Hilbert space Hermitian operators, such as q̂i(tn) . . . q̂j(t1), is not necessarily Her-

mitian and thus may not correspond to an observable. However, the Liouville space
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quantity T q̂i+(tn) . . . q̂j+(t1) is Hermitian and also symmetric under interchange of its

time arguments. Thus we take time-ordered products of (+) superoperators as our

multitime observables.

The two-time correlation function of operators A and B is

〈

T Â+(ta)B̂+(tb)
〉

=
〈

T Â+(ta)Û(ta, tb)B̂+(tb)Û(tb,−∞)
〉

0
(1.31a)

=
〈

T Â+(ta)B̂+(tb)Û(ta,−∞)
〉

0
. (1.31b)

In going from Eq. 1.31a to Eq 1.31b we switched the order of B̂+(tb) and Û(ta, tb)

(allowed by the T ), and then used the identity Û(ta, tb)Û(tb,−∞) = Û(ta,−∞). As

with the single-time measurements, Eq. 1.31b is evaluated by expanding Û (Eq. 1.22)

in powers of V̂−(t′). The series expansion is

〈

T Â+(ta)B̂+(tb)
〉

=
〈

T Â+(ta)B̂+(tb)
〉

0
+

(−i
~

)∫

dt1

〈

T Â+(ta)B̂+(tb)V̂−(t1)
〉

0

+
1

2!

(−i
~

)2 ∫

dt2

∫

dt1

〈

T Â+(ta)B̂+(tb)V̂−(t2)V̂−(t1)
〉

0

+ . . . (1.32)

It is not necessary to specify the limits of integration in Eq. 1.32 because the T

operator guarantees that the integrand is zero for max(t2, t1) > max(ta, tb).

The response of a three-point correlation function may similarly be expanded as

〈

T Â+(ta)B̂+(tb)C+(tc)
〉

=
〈

T Â+(ta)B̂+(tb)Ĉ+(tc)
〉

0
+

(−i
~

)∫

dt1

〈

T Â+(ta)B̂+(tb)Ĉ+(tc)V̂−(t1)
〉

0
+

1

2!

(−i
~

)2 ∫

dt2

∫

dt1

〈

T Â+(ta)B̂+(tb)Ĉ+(tc)V̂−(t2)V̂−(t1)
〉

0

+ . . . . (1.33)

The equivalent Hilbert space expressions are far more involved because the integrals
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must be broken into separate branches corresponding to each ordering of the time-

arguments.

For a system where the perturbation may be decomposed as V (t) = −
∑

j qjfj(t),

we define the generalized response functions (GRFs)

R+−
i,j (t2, t1) =

(
i

~

)

〈T q̂i+(t2)q̂j−(t1)〉0 (1.34a)

R++
i,j (t2, t1) = 〈T q̂i+(t2)q̂j+(t1)〉0 , (1.34b)

R+−−
i,j,k (t3, t2, t1) =

1

2!

(
i

~

)2

〈T q̂i+(t3)q̂j−(t2)q̂k−(t1)〉0 (1.35a)

R++−
i,j,k (t3, t2, t1) =

(
i

~

)

〈T q̂i+(t3)q̂j+(t2)q̂k−(t1)〉0 (1.35b)

R+++
i,j,k (t3, t2, t1) = 〈T q̂i+(t3)q̂j+(t2)q̂k+(t1)〉0 , (1.35c)

and so on. The prefactor for each GRF is 1
n−!

(
i
~

)n− , where n− is the number of

(−) superoperators in the multitime correlation function. The GRFs tell us how a

perturbation affects correlations within the system. The series expansions of a one-,

two-, and 3-point correlation function are:

〈qi(t)〉 = 〈qi〉0 +

∫

dt1R
+−
i,j (t, t1)fj(t1) +

∫

dt2

∫

dt1R
+−−
i,j,k (t, t2, t1)fj(t2)fk(t1) + . . . (1.36a)

〈T q̂i+(tb)q̂j+(ta)〉 = R++
i,j (tb, ta) +

∫

dt1R
++−
i,j,k (tb, ta, t1)fk(t1) +

∫

dt2

∫

dt1R
++−−
i,j,k,l (tb, ta, t2, t1)fk(t2)fl(t1) + . . .(1.36b)

〈T q̂i+(tc)q̂j+(tb)q̂k+(ta)〉 = R+++
i,j,k (tc, tb, ta) +

∫

dt1R
+++−
i,j,k,l (tc, tb, ta, t1)fl(t1) +

∫

dt2

∫

dt1R
+++−−
i,j,k,l,m (tc, tb, ta, t2, t1)fl(t2)fm(t1)

+ . . . , (1.36c)
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where summation over repeated indices is implied. Henceforth we omit the coordinate

indices i, j, k, . . ..

Time-ordered Liouville space correlation functions of the form +−, +−−, +−−−,

etc. are related to response functions, R(n); correlation functions of the form ++,

+ + +, + + ++, etc. are related to fluctuations in the initial state; and correlation

functions of the form ++−, ++−−, +++−, +++−−, etc. are related to changes

in the fluctuations brought on by a perturbation.

Appendix A has a discussion of the symmetry properties of the GRFs in the time

domain and in the frequency domain.



Chapter 2

Two-Body Interactions

In the previous chapter we showed that generalized response functions (GRFs) provide

a compact description of an open quantum system subject to a perturbation. In this

chapter we consider two quantum systems interacting with each other and with a

bath. The GRFs of the coupled system are expressed in terms of the GRFs of the

individual components.

2.1 Introduction

Computing the time-evolution of a system composed of many interacting particles

is a difficult problem in both classical and quantum physics. Standard perturbation

theory provides one approach by expressing the eigenstates of the coupled system in

terms of the eigenstates of the isolated systems. Response functions of the interacting

system can then be expressed as sums over states. However, there are several reasons

to work directly with response functions, making no reference to eigenstates. 1)

Application of perturbation theory presupposes a knowledge of the eigenstates of the

isolated systems, but experiments probe response functions. 2) Standard perturbation

20
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theory is unable to accommodate degrees of freedom associated with a thermal bath

without treating them explicitly. For systems coupled to a bath, eigenstates are not

good variables but response functions are. 3) The computational effort required to

calculate single-particle response functions (via e.g. time-dependent density functional

theory) is less than that required to calculate eigenstates. 4) The formulation in terms

of response functions has a clear semiclassical dynamical interpretation. It provides

model-independent results, which may then be applied either to models of single-

particle response functions or to experimental measurements of such quantities.

Response-function formulations of many-body theory have been developed at vary-

ing levels of approximation. One popular approach is to focus on a limited number of

degrees of freedom, the “particle”, and to treat the rest of the system as a “bath.” The

designation of particle and bath is formally arbitrary, but makes a big difference in

practice. Once this designation is made, projection operator techniques allow one to

formulate reduced equations of motion for the particle, in which the interaction with

the bath is incorporated through a complex self-energy in an effective Hamiltonian.

This procedure is exact with respect to the particle, but sacrifices information about

the state of the bath.

Willis and Picard developed a more symmetric treatment for the time evolution

of two particles interacting with each other and with a bath [200, 145]. They wrote a

reduced equation of motion for the direct product of the single particle density matri-

ces, that includes the interparticle correlations in an effective Hamiltonian. However,

this procedure renders the information about correlations inaccessible: the joint den-

sity matrix contains more information than the direct-product of the single-particle
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density matrices. Thus the method of Willis and Picard can only calculate single-

particle observables. Dispersion forces, which depend on interparticle correlations,

cannot be calculated by this method.

Another common approach is to write the field at each particle as the sum of

applied fields and the fields due to its neighbors. The fields can then be found self-

consistently in terms of single-particle response functions. This technique is called the

local field approximation (LFA). When a system consists of many identical particles,

it is commonplace to focus on one, and to introduce an average field due to all the

other particles. This mean-field approximation is the basis of the Clausius-Mossotti

model of dielectrics, the Curie-Weiss model of ferromagnetism, and the Hartree and

Hartree-Fock approaches to electronic structure. Local field techniques are approxi-

mate because they treat the polarization of each particle as a classical quantity with

a single well-defined value, when the polarization is actually an operator. The LFA

reproduces many aspects of interacting systems, but misses some important effects

due to correlations. Even if the system starts with no correlations (i.e. its density

matrix can be expressed as a direct product of single-particle density matrices) the

interactions between particles lead to correlations at later times.

In this chapter I develop a perturbation theory for the time-evolution of two inter-

acting systems that is formally exact, that treats both systems on an equal footing,

and that relates joint observables of the coupled system to single-particle observables

of the isolated systems. This procedure includes the effects of correlations in the

time-evolution and allows one to calculate observables that depend on correlations.

The price of keeping this additional information is that the time-evolution can only

be expressed as an infinite series. However, for many physical systems this series can
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be truncated at low order.

The starting point of my theory is a density matrix that at time −∞ was in

a direct-product state. The Liouville space time-evolution operator transforms this

state into a correlated state. However, I show how to factorize the time-evolution

operator into a sum of terms that individually preserve the purity of the direct-

product form. The terms that act in the single-particle space are the generalized

response functions (GRFs) calculated in Chapter 1. This result provides a systematic

procedure for adding quantum corrections to the local field approximation.

In chapters 3, 4, and 5 we apply this technique to study intermolecular forces.

2.2 Factorization of two-body response function

The Hamiltonian of two interacting systems, a and b, can always be partitioned as:

H = Ha(Qa) +Hb(Qb) +Hab(Qa,Qb, t), (2.1)

where Qj ≡ (qj,pj), is the vector of the generalized coordinates, qj , and momenta

pj , of system j (j = a, b). The Hamiltonians of the individual systems, Ha and

Hb, are time-independent. The perturbation, Hab(Qa,Qb, t), includes interactions

between the two systems as well as any time-dependent driving force on either system.

Interaction between each system and a bath may be included in Ha and Hb, provided

that the two baths are uncorrelated. For convenience we refer to the two systems

as “molecules” a and b, but it should be noted that the derivation is completely

general: the systems could be a molecule and the radiation field, electronic and

nuclear coordinates within a molecule, two nuclear spins, etc.
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We wish to express the linear and nonlinear response functions of any opera-

tor, Bab(Qa,Qb), to an arbitrary perturbation, Hab(Qa,Qb, t), in terms of the re-

sponse functions of single-molecule Hermitian operators, Ba(Qa) and Bb(Qb), to

single-molecule perturbations Va(Qa, t) and Vb(Qb, t).

The time-evolution of Bab is given by (Eqs. 1.22 and 1.23)

〈Bab(t)〉 =

〈

T B̂ab+(t) exp

(

− i

~

∫ t

−∞
Ĥab−(t′)dt′

)〉

0

, (2.2)

where quantities with a (̂ ) are expressed in the interaction picture (Eq. 1.21), with

H0 ≡ Ha + Hb. The initial density matrix, ρ0 is assumed to be a direct product of

the noninteracting steady state density matrices of the individual molecules, ρa0 and

ρb0. Expanding Eq. 2.2 in powers of Ĥab− yields the nth order response of Bab:

〈

B
(n)
ab (t)

〉

=
1

n!

(−i
~

)n ∫

dtn · · ·
∫

dt1

〈

T B̂ab+(t)Ĥab−(tn) . . . Ĥab−(t1)
〉

0
. (2.3)

We now express Eqs. 2.2 and 2.3, in terms of products of single-molecule GRFs.

The perturbation Hab(Qa,Qb, t) and the observable Bab(Qa,Qb) are each expressed

in a basis whose coordinates are direct products of single-molecule operators:

Hab(Qa,Qb, t) =
∑

i,j

cij(t)Vai(Qa)Vbj(Qb) (2.4a)

Bab(Qa,Qb) =
∑

i,j

dijBai(Qa)Bbj(Qb) (2.4b)

The decomposition of Eq. 2.4 is not unique; in fact any convenient basis in phase

space may be chosen. For instance, in Chapter 3 we show how the nonretarded

interaction Hamiltonian for two molecules with nonoverlapping charge distributions

can be expressed in terms of charge density operators [129], dipole density opera-

tors [49], or electric multipole operators [86]. Each expression is naturally in the form

of Eq. 2.4. When carried to infinite order, all expansions of the Hamiltonian yield
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identical results. However, the sum in Eq. 2.4 is typically truncated and the physical

approximation implied by this truncation depends on the basis. External forcing of

one particle, (e.g. by classical radiation) may also be included in this expansion: the

operator for the noninteracting particle is simply the identity matrix.

To keep the notation simple, we assume Eqs. 2.4a and 2.4b each have only a single

term, so Hab = −c(t)Va(Qa)Vb(Qb) and Bab = Ba(Qa)Bb(Qb). There is no conceptual

difficulty in extending the results to multiple terms in each sum. Converting Eq. 2.4

to the interaction picture yields

Ĥab(t) = −c(t)V̂a(t)V̂b(t) (2.5a)

B̂ab(t) = B̂a(t)B̂b(t). (2.5b)

Because the operators on the r.h.s. of Eq. 2.5 each act in a single-molecule basis, their

interaction picture only requires the single-molecule reference Hamiltonian. That is

V̂a(t) ≡ exp

(
i

~
Hat

)

Va exp

(

− i

~
Hat

)

V̂b(t) ≡ exp

(
i

~
Hbt

)

Vb exp

(

− i

~
Hbt

)

, (2.6)

and similarly for B̂a(t) and B̂b(t).

Finally, products of ordinary operators may be converted into products of super-

operators using the following identities:

(XY )− = X−Y+ +X+Y−

(XY )+ = X+Y+ +
1

4
X−Y−, (2.7)

which can easily be verified by applying the definitions of the superoperators. Thus
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the Liouville superoperator becomes

Ĥab−(t) = −c(t)[V̂a(t)V̂b(t)]−

= −c(t)[V̂a+(t)V̂b−(t) + V̂a−(t)V̂b+(t)] (2.8)

Similarly the observable Bab becomes

B̂ab+(t) = B̂a+(t)B̂b+(t) +
1

4
B̂a−(t)B̂b−(t). (2.9)

Because B̂ab+ is the leftmost superoperator in Eqs. 2.2 and 2.3, all (−) terms in its

expansion vanish when the trace is evaluated. We are thus free to neglect the second

half of Eq. 2.9. The expansion of Ĥab− has (+) and (−) terms, both of which must

be kept.

Inserting Eqs. 2.8 and 2.9 into Eq. 2.2 yields

〈Bab(t)〉 =

〈

T B̂a+(t)B̂b+(t) exp

[
i

~

∫ t

−∞
dt′ c(t′)[V̂a+(t′)V̂b−(t′) + V̂a−(t′)V̂b+(t′)]

]〉

0

.

(2.10)

Eq. 2.10 is an exact formal expression and contains only single-molecule superopera-

tors which act either only on system a or only on system b. As discussed in chapter

1, a (+) superoperator corresponds to a measurement and a (−) superoperoperator

corresponds to a time-evolution of the density matrix. Thus the term V̂a+(t′)V̂b−(t′)

represents system b evolving under the influence of system a; the term V̂a−(t′)V̂b+(t′)

represents system a evolving under the influence of system b.

Expanding the exponent in Eq. 2.10, the nth order response can be written as a
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sum of 2n terms:

〈

B
(n)
ab (t)

〉

=
1

n!

(
i

~

)n ∫ t

−∞
dtn · · ·

∫ t

−∞
dt1
∑

{να}
〈

T [B̂a+(t)B̂b+(t)][V̂aνn
(tn)V̂bνn

(tn)] . . . [V̂aν1
(t1)V̂bν1

(t1)]
〉

0

c(tn) . . . c(t1) να = +,−, (2.11)

where ν ≡ −ν, and the sum is over all n-element sequence (νn, . . . , ν1).

The integrand of Eq. 2.11 has the structure of a response function, where the

bimolecular coordinate 〈Bab(t)〉, responds to the history of time-dependent inter-

molecular couplings, c(t′), with the symmetric kernel given by

R
(n)
ab (t, tn, . . . , t1) =

1

n!

(
i

~

)n∑

{να}

〈

T B̂a+(t)B̂b+(t)V̂aνn
(tn)V̂bνn

(tn) . . . V̂aν1
(t1)V̂bν1

(t1)
〉

0
.

(2.12)

We have nearly accomplished our goal, because the superoperators inside the 〈· · ·〉0
of Eq. 2.12 each act only on a or only on b. Because the initial density matrix is a

direct product, we can factor the correlation function into a product of single-molecule

correlation functions:

R
(n)
ab (t, tn, . . . , t1) =

1

n!

(
i

~

)n∑

{να}

(〈

T B̂a+(t)V̂aνn
(tn) . . . V̂aν1

(t1)
〉

a0
×

〈

T B̂b+(t)V̂bνn
(tn) . . . V̂bν1

(t1)
〉

b0

)

. (2.13)

Thus the nth order response of 〈Bab〉 may be written as a sum of 2n products of

single-molecule multitime correlation functions of Liouville space superoperators.

In the expansion 2.13, if the term 〈· · ·〉a0 has m (+) superoperators and n − m

(−) superoperators (not counting the initial B̂a+ which is fixed), then it is multiplied

by a term 〈· · ·〉b0 with n−m (+) superoperators and m (−) superoperators. Making
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use of the T , we may collect all the products 〈· · ·〉a0 〈· · ·〉b0 characterized by a given

value of m, and write them as

n!

(n−m)!m!

〈

T B̂a+(t) V̂a+(tn) . . . V̂a+(tn−m+1)
︸ ︷︷ ︸

m terms

V̂a−(tn−m) . . . V̂a−(t1)
︸ ︷︷ ︸

n−m terms

〉

a0

×

〈

T B̂b+(t) V̂b+(t1) . . . V̂b+(tn−m)
︸ ︷︷ ︸

n−m terms

V̂b−(tn−m+1) . . . V̂b−(tn)
︸ ︷︷ ︸

m terms

〉

b0

. (2.14)

The multitime correlation functions in Eq. 2.14 are the same as in the definitions of

the GRFs. When Eq. 2.14 is inserted into Eq. 2.13, the factors of n! cancel and the

prefactor may be written as 1
m!

( i
~
)m 1

(n−m)!
( i

~
)n−m. Noting that the prefactor for each

GRF is 1
n−!

(
i
~

)n−

we arrive at the result

R
(n)
ab (t, tn, . . . , t1) =

n∑

m=0

R+

m

︷ ︸︸ ︷
+ . . .+

n−m

︷ ︸︸ ︷
− . . .−

a (t, tn, . . . , t1)R
+

n−m

︷ ︸︸ ︷
+ . . .+

m

︷ ︸︸ ︷
− . . .−

b (t, t1, . . . , tn).

(2.15)

As advertised, the joint nonlinear response function of the coupled system is expressed

in terms of the GRFs of the constituents. The single-molecule GRFs can be computed

at many levels of theory, or may be determined directly from measurements on the

individual molecules.

It is noteworthy that the joint response function R
(n)
ab is not expressed in terms of

the single-molecule response functions; rather the entire set of single-molecule GRFs

is required. The discussion of the KMS condition in Appendix section A.2 suggests

that there may exist a way to express all nth order GRFs in terms of the nth order

response function. If such a relation exists, then the joint response may be expressed

in terms of the single-molecule responses alone, but for now we must be satisfied with

Eq. 2.15.



29

2.3 Factorization in the L,R representation

Sometimes it is more convenient to work directly with the single-molecule Liouville

space pathways rather than the single-molecule GRFs. Towards that end we factor

the joint time-evolution superoperator in the L,R representation. The results of this

section are equivalent to those of the preceding section, although they paint a different

physical picture.

The point of departure from the preceding discussion is Eq. 2.5. Rather than

factoring Ĥab−(t) and B̂ab+(t) in the +,− representation, we factor them in the L,R

representation:

Ĥab−(t) = −c(t)[(V̂a(t)V̂b(t))L + (V̂a(t)V̂b(t))R]

= −c(t)[V̂aL(t)V̂bL(t) + V̂aR(t)V̂bR(t)]. (2.16)

Similarly Bab is expanded to

B̂abL = B̂aL(t)B̂bL(t). (2.17)

Inserting Eqs. 2.16 and 2.17 into Eq. 2.2 yields

〈Bab(t)〉 =

〈

T B̂aL(t)B̂bL(t) exp

[
i

~

∫ t

−∞
dt′ c(t′)[V̂aL(t′)V̂bL(t′) + V̂aR(t′)V̂bR(t′)]

]〉

0

.

(2.18)

Eq. 2.10 expressed in the ± notation and Eq. 2.18 expressed in the L,R notation have

very similar structures. However, there is a subtle difference between these equations.

In the exponent of Eq. 2.10, every + superoperator that acts on a is paired with a

− superoperator that acts on b, and vice versa, which leads to the interpretation of

a evolving under the influence of b and b evolving under the influence of a. In the

exponent of Eq. 2.18, every L superoperator that acts on a is paired with another L
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superoperator that acts on b, and similarly for the R superoperators. The reason is

that each term represents the perturbation acting simultaneously on either the bras

of a and b, or on the kets of a and b. The ± expression and the L,R expression are

both exact and equivalent, but lead to different physical pictures. Depending on the

situation one may be more convenient than the other.

Expanding Eq. 2.18 in powers of Hab, the nth order response can be written as a

sum over Liouville space pathways:

〈

B
(n)
ab (t)

〉

=
1

n!

(
i

~

)n ∫ t

−∞
dtn · · ·

∫ t

−∞
dt1
∑

{ηα}
〈

T [B̂aL(t)B̂bL(t)][V̂aηn
(tn)V̂bηn

(tn)] . . . [V̂aη1
(t1)V̂bη1

(t1)]
〉

0

c(tn) . . . c(t1) ηα = L,R, (2.19)

where {ηα} denotes a particular choice of the n-element sequence (ηn, . . . , η1).

Each term in Eq. 2.19 factors into a product of single-molecule Liouville space

pathways:

〈

T B̂aL(t)B̂bL(t)V̂aηn
(tn)V̂bηn

(tn) . . . V̂aη1
(t1)V̂bη1

(t1)
〉

0
=

〈

T B̂aL(t)V̂aηn
(tn) . . . V̂aη1

(t1)
〉

a0
×
〈

T B̂bL(t)V̂bηn
(tn) . . . V̂bη1

(t1)
〉

b0
, (2.20)

so that the joint response function is

R
(n)
ab (t, tn, . . . , t1) =

1

n!

(
i

~

)n∑

{ηα}

(〈

T B̂aL(t)V̂aηn
(tn) . . . V̂aη1

(t1)
〉

a0
×

〈

T B̂bL(t)V̂bηn
(tn) . . . V̂bη1

(t1)
〉

b0

)

. (2.21)

The objects 〈· · ·〉a0 and 〈· · ·〉b0 that appear in Eq. 2.21 are exactly the Liouville space

pathways that occur in the definition of the single molecule nonlinear response func-

tions, Eq. 1.27. If the Liouville space pathways of the individual molecules have
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been computed in order to determine the single-molecule response functions, then

no further effort is required to calculate the joint response of the coupled molecules.

However, if only the single-molecule response functions are known, and not their Li-

ouville space pathways, then there is not enough information to calculate the joint

response. Thus we need either all the GRFs of each molecule, or all the Liouville

space pathways of each molecule to calculate the joint response.

The parallel between the expression for the joint response function, Eq. 2.21 and

the expressions for the individual response functions, Eq. 1.27 suggests an interpre-

tation of Eq. 2.21 in terms of double-sided Feynman diagrams. The photon lines

in standard double-sided Feynman diagrams are replaced by “coupling lines”, which

represent the coupling Hab acting simultaneously on the a and b density matrices. Fig-

ure 2.1 shows the double-sided Feynman diagram for the linear response of a dimer

to a time-dependent intermolecular coupling.

Suppose we are given two separate quantum systems, and we probe the response

of each to a set of arbitrary perturbations. Can we then predict the response when

the two systems are coupled? In this section I have shown that the answer is no.

However, if we also measure the fluctuations of the individual systems, and how these

fluctuations change in response to a perturbation, then we can predict the behavior

of the coupled system. This result is exact and independent of any model for the

matter. In the next three chapters we treat the two systems as molecules, and apply

the formalism to calculate intermolecular forces.
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baab baab

Figure 2.1: Double-sided Feynman diagram for the linear response of an intermolec-
ular correlation, 〈qa(t)qb(t)〉 to a time-dependent intermolecular coupling, c(t)qaqb.
Each Liouville space pathway for the dimer is the product of the corresponding Li-
ouville space pathways for the individual molecules.



Chapter 3

Nonequilibrium van der Waals
Forces

The formalism of the preceding chapter is applied to calculate the van der Waals force

between molecules at different temperatures and subject to time-dependent coupling.

In contrast to attractive equilibrium forces, nonequilibrium forces may be attractive

or repulsive, exhibit chemically specific resonances, are far stronger, and may be

nonconservative (with either positive or negative dissipation). The force also shows

significant fluctuations, especially at high temperature.

3.1 Introduction

Fluctuation-induced long-range forces are widespread and have been well studied for

systems in thermodynamic equilibrium [88, 124, 109, 120]. These forces were first

calculated for electromagnetic fluctuations, leading to the van der Waals and Casimir

forces. Recently, analogous forces have been predicted for phononic fluctuations [20]

and for bodies immersed in correlated fluids, such as superfluid He, liquid crystals, and

binary mixtures near a critical point [94]. At low temperature the force is entirely due

33
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to zero-point fluctuations, while at finite temperatures thermal fluctuations contribute

as well.

Consider two bodies, each with a characteristic resonant frequency ω0, interacting

in vacuum at absolute zero. As the distance, r, between the bodies increases, the

force goes through two qualitatively different regimes, corresponding to r < c/ω0 and

r > c/ω0. In the nonretarded limit, r � c/ω0, the force is determined solely by the

fluctuation properties of the bodies. The electromagnetic coupling between the bodies

is “rigid”, in the sense that it would require an energy � ~ω0 to excite a radiation

mode of wavelength λ ∼ r. London showed that in this regime the van der Waals

energy scales as r−6, and arises from correlated zero-point fluctuations of molecular

dipole moments [118]. For most interactions of small and midsized molecules, a

nonretarded calculation of the force is adequate.

In the retarded limit, r � c/ω0, the lowest-energy mode of the (particles plus

intervening vacuum) system belongs to the vacuum. Thus the particles may be ap-

proximated as “rigid”, and the force depends only on the electrodynamic properties

of the vacuum. Casimir and Polder [30] showed that the retarded interaction en-

ergy scales as r−7. Casimir provided the interpretation that this force arises from

the zero-point fluctuations of the vacuum [29]. Casimir forces depend only on the

geometry of the objects and on the boundary conditions they impose on the field.

Li and Kardar developed sophisticated path-integral techniques for calculating these

Casimir forces [113], both in vacuum and in correlated fluids.

Roughly speaking, Casimir forces probe the spectral density of the vacuum, while

van der Waals forces probe the spectral density of the interacting objects. Casimir

forces have been of interest to physicists because of their “universal” nature: like
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gravity, they are independent of the composition of the bodies. van der Waals forces

have been of interest to chemists for precisely the opposite reason: they provide a

means for understanding and controlling the assembly of a wide range of nanoscale

objects.

In both nonretarded and retarded regimes, there is the possibility of thermal

excitation. In the nonretarded case, McLachlan showed that for kBT > ~ω0 (i.e.

when the molecules may be thermally excited), the force depends only on the zero-

frequency polarizabilities and scales as r−6 (Eq. 3.13 below) [130]. Lifshitz [115] and

Dzyaloshinskii, Lifshitz, and Pitaevskii [54] studied the retarded force for kBT > ~c/r

(i.e. when the vacuum gap may be thermally excited) and showed that this force too

depends only on the zero-frequency polarizabilities and scales as r−6. Since for any

temperature T > 0 there exists an r large enough that kBT > ~c/r, the interaction

energy for two molecules follows the unusual dependence r−6 → r−7 → r−6 as r is

increased. Recent studies have sought to unify the formalisms for zero-temperature

and finite-temperature, retarded and nonretarded interactions [73, 133, 135, 155],

although in Chapter 5 we show that some of these works are incorrect.

Work on nonequilibrium van der Waals-Casimir forces has focussed on the retarded

regime, in which the specific material properties are irrelevant. A range of studies has

considered the forces accompanying motion or deformation of objects in a vacuum [9,

89, 190, 139, 74]. The principal finding is that there is a “friction of the vacuum” that

accompanies relative motion of two noncontacting objects. The dissipated energy goes

into exciting electromagnetic modes of the intervening vacuum. Thus it is possible to

generate light from the vacuum merely by modulating the boundary conditions [163].

Neto and Reynaud pointed out that the friction of the vacuum must be associated
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with a fluctuating vacuum force, by the fluctuation-dissipation theorem [139], and

Bartolo and coworkers recently considered the fluctuations in the classical Casimir

force in correlated fluids [8]. For an excellent and readable review of dynamic Casimir

forces, see [94].

These dynamic Casimir effects are of theoretical interest and are reminiscent of

the Hawking effect (radiation from black holes) and the Unruh effect (radiation from

accelerated bodies), which suggest deep connections between quantum mechanics,

relativity and cosmology. However, on the laboratory scale there is little hope of

detecting dynamic Casimir effects.

Dynamic van der Waals forces are another story. Many interesting systems are not

in equilibrium when they interact. Cells run on interactions between molecules that

have been chemically excited, e.g. by conversion of ATP. Optically excited molecules

interact during photosynthesis [189], photochemical reactions [127], excitonic pro-

cesses in molecular aggregates [189], and experiments using fluorescence resonance

energy transfer (FRET) [168, 38]. Furthermore, the coupling between molecules is

rarely constant in time. Molecules in a gas undergo fleeting encounters, while the

coupling between molecules in a liquid may oscillate at bond vibrational frequencies.

Nonequilibrium van der Waals forces are not “universal” the way Casimir forces are,

but we can turn this to our advantage, to find a whole zoo of chemically specific

effects.

Here we consider time-dependent nonretarded interactions between molecules.

Since the vacuum is rigid in the nonretarded limit, the lowest available mode corre-

sponds to molecular excitation. We examine the effects of temperature and a thermal

bath, and find that nonequilibrium van der Waals forces show a much richer range of
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behaviors than their equilibrium cousins.

3.2 Interaction Hamiltonian

Consider the Hamiltonian of two coupled molecules, a and b, each with a single

internal coordinate qj and momentum pj (j = a, b)

H = Ha(qa, pa) +Hb(qb, pb) − J(z(t))qaqb, (3.1)

The coupling, J(z(t)), is an externally driven parameter modulated by e.g. the in-

termolecular separation, z(t). Assuming we know the trajectory z(t), we can write

the coupling either as J(z) or J(t), as is convenient. The bilinear perturbation,

Hab(qa, qb, t) = −J(t)qaqb, is paradigmatic of intermolecular forces: most two-body

interactions can be written as a sum of terms of the form of Eq. 3.1. For example, if qa

and qb represent charge density operators, ρa and ρb, respectively, then the interaction

Hamiltonian is

Hab =
1

2

∫ ∫
ρa(ra)ρb(rb)

4πε0r
dradrb, (3.2)

where r ≡ ra − rb is the separation between points in molecules a and b. If both

molecules are neutral, then at long range Hab ∝ r−3, while Eq. 3.2 might give the

erroneous impression that Hab ∝ r−1. To avoid calculating contributions to Hab that

end up cancelling, it is possible to work with dipole densities, µ(r), rather than charge

densities. Integrating Eq. 3.2 by parts yields

Hab = −1

2

∫ ∫

Jij(r)µai(ra)µbj(rb)dradrb. (3.3)

where repeated indices are summed over and the nonretarded interaction tensor is

Jij(r) =
1

4πε0
∇i∇j

1

r
=

3rirj − δij
4πε0r3

. (3.4)
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The dipole distribution function and the charge density are related by ρ = ∇·µ. For

an arbitrary vector function f , the gauge transformation µ → µ + ∇ × f leaves ρ,

and hence Hab, unchanged. The choice of gauge for the dipole distribution function

is formally arbitrary, but may affect the severity of errors introduced in numerical

calculations.

In the point-dipole approximation we associate a single dipole with each molecule,

so the relevant coordinates are qa = µa, qb = µb. The interaction is approximated

as Hab = −Jij(r)µaiµbj. It is almost always acceptable to make the point-dipole

approximation for molecule-light interactions because an optical-frequency plane wave

is spatially homogeneous over most molecules. This is less often the case for molecule-

molecule interactions. The relevant intermolecular spacings are typically comparable

to the molecular size (e.g. typical Förster radii are 10 - 50 Å), and thus the field

produced by one molecule may vary significantly over its neighbor.

For closely spaced molecules, the point-dipole approximation may be improved

by including higher multipole moments of each molecule. When this is done, the

interaction becomes [124, 178]

Hab = −Jijµ
a
iµ

b
j −

1

3
Jijk(µ

a
i Θ

b
jk − Θa

ijµ
b
k)

−Jijkl(
1

15
µa

i Ω
b
jkl −

1

9
Θa

ijΘ
b
kl +

1

15
Ωa

ijkµ
b
l ) + . . . , (3.5)

where µ, Θ, and Ω are molecular dipole, quadrupole, and octupole moments, respec-

tively. The quadrupole and octupole field propagators are defined in extension of

Eq. 3.4 by

Jijk(r) =
1

4πε0
∇i∇j∇k

1

r

Jijkl(r) =
1

4πε0
∇i∇j∇k∇l

1

r
. (3.6)
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The multipole expansion is most useful for analytical treatments of molecules with

high symmetry. Rapid advances in quantum chemistry density functional theory

(DFT) packages allow the computation of the entire charge distribution of a molecule,

so it is not often necessary to resort to the multipole expansion to calculate electro-

static couplings.

All of the expressions for the interaction potential (Eq. 3.2, Eq. 3.3 and Eq. 3.5) are

bilinear in single-molecule operators, and thus are already in the form of the generic

expansion of a two-body interaction, Eq. 2.4a. We work with the Hamiltonian of

Eq. 3.1 so that any model of the interaction can be substituted into our results.

3.3 McLachlan formalism

The van der Waals force is usually calculated in second order perturbation theory,

under the assumptions that the intermolecular coupling J is independent of time and

that both molecules are at thermal equilibrium. London showed that the ground state

experiences a shift that is second order in the intermolecular coupling [118], given by

U = −1

~
J2

∑

{m,n}6=0

|µa
0mµ

b
0n|2

ωa
m0 + ωb

n0

, (3.7)

where µj
xy ≡ 〈y|qj|x〉 is the transition dipole and ωj

xy = (Ej
x −Ej

y)/~ is the transition

frequency, both from state x to y of molecule j. The denominator, ~(ωa
m0 + ωb

n0),

shows that the interaction arises from highly off-resonant virtual transitions from the

ground state to states with both molecules excited.

The identity

1

x+ y
=

2

π

∫ ∞

0

xy

(x2 + ξ2)(y2 + ξ2)
dξ (3.8)
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may be used to factor U into a product of terms that depend only on the coordinates

of a or b:

U = − 2

π~
J2

∫ ∞

0

dξ

(
∑

m

ωa
m0|µa

0m|2
(ωa

m0)
2 + ξ2

)(
∑

n

ωb
n0|µb

0n|2
(ωb

n0)
2 + ξ2

)

. (3.9)

Meanwhile, the sum-over-states expression for the single-molecule polarizability is

αj(ω) =
2

~

∑

n

ωj
n0|µj

0n|2
(ωj

n0)
2 − ω2

. (3.10)

Thus each term in parentheses in Eq. 3.9 can be replaced by ~

2
αj(iω). The ground

state energy becomes

U = − ~

2π
J2

∫ ∞

0

αa(iω)αb(iω)dω. (3.11)

A polarizability at imaginary frequency gives the response to an exponentially growing

force, f(t): 〈q(t)〉 = α(iω)feωt.

McLachlan showed that at finite temperature, the interaction free energy, ∆F is

given by a generalization of Eq. 3.11 [129, 130]:

∆F = −kBTJ
2

∞∑

n=0

′αa(iωn)αb(iωn), (3.12)

where the prime means that the n = 0 term is to be multiplied by 1/2, and ωn ≡

2πnkBT/~ are the Matsubara frequencies. When applying McLachlan’s formula, it

should be noted that for all systems except the harmonic oscillator, the polarizability

is a function of temperature too.

The lowest excitation energy in small molecules is typically ~ω0 � kBT , in which

case Eq. 3.12 reduces to Eq. 3.11. When there are excitations of energy less than

kBT (such as rotations, vibrations, and conformational shifts), then Eq. 3.12 yields

the classical expression

∆F = −1

2
kBTJ

2αa(0)αb(0). (3.13)
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Most molecules have modes with both high and low energies, relative to kBT . For

freely rotating dipolar molecules, the contribution to the van der Waals force from

the high energy modes is called the dispersion interaction, while the contributions

from the low energy rotational mode are called the Keesom interaction (molecular

alignment) and the induction interaction (molecular polarization) [88]. McLachlan’s

formula provides a unified description of the three contributions to the van der Waals

force.

The McLachlan formalism has been used to calculate van der Waals forces for

many systems and at various levels of theory. In the dipole approximation, the αj

represent dipole susceptibilities and Eq. 3.12 yields a 1/r6 interaction energy. If

Eq. 3.1 is expanded in charge densities, dipole densities, or multipole moments, then

the αj represent the corresponding single-particle susceptibilities. McLachlan also

showed that Eq. 3.12 yields the fully retarded dispersion interaction when system a

is a molecule and system b is the radiation field. The presence of a second molecule

modifies the susceptibility of the radiation field and thus affects the self-energy of the

first molecule.

The advantage of the McLachlan formula, Eq. 3.12, over the sum-over-states for-

mula, Eq. 3.7, is that the McLachlan formula does not require a model of the internal

dynamics of either body: it expresses the interaction free energy in terms of single-

molecule linear response functions, which may be determined through experiment,

simulation, or at various levels of theory.

The response function formalism developed in Chapter 2 allows us to generalize the

McLachlan expression to include 1) time-dependent coupling, J(t), associated with
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relative motion; 2) nonequilibrium initial conditions corresponding to different tem-

peratures or athermal distributions; 3) higher order corrections related to nonlinear

single-molecule response functions; 4) fluctuations in the force about its equilibrium

value. In Chapter 4 we consider the case of one molecule excited and in Chapter 5

we treat the effect of an incident radiation field. The McLachlan formula arises as a

special case of our more general results.

3.4 Response function formalism

We now formulate intermolecular forces in terms of response functions. The operator

B ≡ qaqb (3.14)

creates intermolecular correlations. The key quantities in my theory are response

functions, R
(n)
B (t, tn, . . . , t1), that relate the expectation value of the correlation, 〈B(t)〉,

to the coupling at past times, J(t′), via:

〈B(t)〉 = B0 +

∫ t

−∞
dt1R

(1)
B (t, t1)J(t1) +

∫ t

−∞
dt2

∫ t

−∞
dt1R

(2)
B (t, t2, t1)J(t2)J(t1) + . . . ,

(3.15)

where B0 ≡ 〈B〉0 is the expectation value of the correlation in the uncoupled state.

The nth order response function is

R(n)(t, tn, . . . , t1) =
1

n!

(
i

~

)n 〈

T B̂+(t)B̂−(tn)B̂−(tn−1) . . . B̂−(t1)
〉

0
, (3.16)

which can be expanded in single-molecule GRFs via Eq. 2.15. In the frequency

domain, 〈B̃(ω)〉 is given by

〈

B̃(ω)
〉

= B0δ(ω) + χ
(1)
B (ω)J̃(ω) +

∫

dω2

∫

dω1χ
(2)
B (−ω;ω2, ω1)J̃(ω2)J̃(ω1) + . . . ,

(3.17)
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where

χ
(n)
B (−ωs;ωn, . . . , ω1) =

∫

dτn · · ·
∫

dτ1G
(n)(τn, . . . , τ1)e

i(ωnτn+...+ω1τ1)δ(ωs−ωn−. . .−ω1),

(3.18)

and G(n) is related to R(n) by Eq. 1.4.

Equations 3.15 and 3.16 are equivalent to the fundamental equations of nonlinear

optics, with the polarization, p, replaced by the intermolecular correlation, B, the

field, E(t), replaced by the coupling, J(t), and the time-domain optical response

functions, S(n), replaced by the response function of the intermolecular correlation,

R
(n)
B . This analogy allows us to apply many of the analytical techniques and results

of nonlinear optics to the intermolecular force.

For instance, the linear response function, χ
(1)
B (ω) has real and imaginary compo-

nents, χ′
B(ω) and χ′′

B(ω), which are even and odd functions of frequency, respectively.

The parallel between χ
(1)
B (ω) and the linear polarizability, α(ω), allows us to write a

Kramers Kronig relation connecting χ′
B(ω) and χ′′

B(ω):

χ′
B(ω) =

1

π
P
∫ ∞

−∞

χ′′
B(ω′)

ω′ − ω
dω′, (3.19)

and its inverse

χ′′
B(ω) = −1

π
P
∫ ∞

−∞

χ′
B(ω′)

ω′ − ω
dω′. (3.20)

In the next section we show that χ′
B(ω) is related to the conservative part of the

force and χ′′
B(ω) is related to the dissipative part, and Eqs. 3.19 and 3.20 provide a

connection between the two.
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3.4.1 Forces and dissipation

Now we relate 〈B(t)〉 to the intermolecular force. The steady state van der Waals free

energy is obtained by an adiabatic switching of the coupling, J . The work performed

in this process is

W =

∫
∂H

∂J
dJ = −

∫

〈B〉 dJ, (3.21)

where 〈B〉 is given by Eq. 3.15 or Eq. 3.17. In an adiabatic process W = ∆F , where

∆F is the change in free energy. For nearly constant J , it is most convenient to use

the zero-frequency components of χ
(n)
B to calculate 〈B〉, whence the free energy is:

∆F = −B0J − 1

2
χ

(1)
B (0)J2 − 1

3
χ

(2)
B (0; 0, 0)J3 − . . . . (3.22)

The interaction force is given by f = −∂∆F
∂z

. When B0 = 0 (i.e. qa and qb are

uncorrelated when J = 0), then ∆F = −1
2
χ

(1)
B (0)J2. This energy shift is analogous

to the DC Stark shift, ∆F = −1
2
α(0)E2.

In order for ∆F to be well defined, the system must be in a steady state through-

out the process of applying J . We will study several cases below which satisfy this

constraint, but in which the states are not ones of thermal equilibrium. Nonequi-

librium steady states are allowed in open quantum systems coupled to multiple heat

baths. In such cases, ∆F is not the thermodynamic free energy, but it still plays the

role of a “potential function” (i.e. a state-function whose gradient gives the force).

When J varies on a timescale comparable to or shorter than the slowest relaxation

time of G
(1)
B , then the free energy is ill-defined but we can still calculate the interaction

force. The classical force on molecule j is f = ṗj, where pj is its classical momentum.

We define a quantum mechanical force operator by f ≡ ṗj, where the operator pj ≡
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i~ ∂
∂z

. The rate of change of momentum is given by the Heisenberg equation of motion

ṗj =
i

~
[H, pj ]. (3.23)

Evaluating the commutator yields ṗj = −∂Hab/∂z. The intermolecular force operator

is thus f(t) = (∂J/∂z)B(t), with expectation value

〈f(t)〉 =
∂J

∂z

∣
∣
∣
∣
z(t)

〈B(t)〉 . (3.24)

The quantity ∂J/∂z can come outside the brackets because we are treating J as a

classical variable.

A second quantity of interest is the instantaneous power dissipation, given by

〈P (t)〉 = f(t)
∂z

∂t

= 〈B(t)〉 ∂J
∂t
. (3.25)

When the dominant contribution to the force comes from the linear susceptibility,

χ
(1)
B (ω), we may evaluate explicitly the conservative and dissipative components of

the force. In the frequency domain, the coordinate B has two components: 〈B̃(ω)〉 =

〈B̃′(ω)〉+ i〈B̃′′(ω)〉, where 〈B̃′(ω)〉 ≡ χ′
B(ω)J̃(ω) and 〈B̃′′(ω)〉 ≡ χ′′

B(ω)J̃(ω). 〈B̃′(ω)〉

is in phase with J̃(ω) while 〈B̃′′(ω)〉 is phase-shifted by π/2. The components of

〈B̃(ω)〉 lead to a force which has reversible and irreversible components, f̃(ω) =

f̃r(ω) + f̃i(ω), where the Fourier transform of Eq. 3.24 yields:

f̃r(ω) ≡
∫ ∞

−∞

∂J̃(ω − ω1)

∂z
χ′

B(ω1)J̃(ω1)dω1

f̃i(ω) ≡
∫ ∞

−∞
i
∂J̃(ω − ω1)

∂z
χ′′

B(ω1)J̃(ω1)dω1. (3.26)

The time-averaged force, f̃(0), is due entirely to f̃r(0), because χ′′
B(ω) is odd so

f̃i(0) = 0. Making use of the fact that J̃(−ω) = J̃∗(ω), we write (∂J̃(−ω1)/∂z)J̃(ω1)
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as (∂/∂z)1
2
|J̃(ω1)|2. The time-averaged force is given by the gradient of an energy:

f̃(0) =
∂

∂z

1

2

∫ ∞

−∞
χ′

B(ω1)|J̃(ω1)|2dω1. (3.27)

We proceed along similar lines to calculate the power dissipation. Converting

Eq. 3.25 into the frequency domain, the power separates into reversible and irre-

versible parts, P̃ (ω) = P̃r(ω) + P̃i(ω), where

P̃r(ω) ≡
∫ ∞

−∞
−iω1J̃(ω − ω1)χ

′
B(ω1)J̃(ω1)dω1

P̃i(ω) ≡
∫ ∞

−∞
ω1J̃(ω − ω1)χ

′′
B(ω1)J̃(ω1)dω1. (3.28)

The time-averaged power, P̃ (0), is entirely due to P̃i(ω), because of the extra factor

of ω1 in Eq. 3.28 compared to Eq. 3.26:

P̃ (0) =

∫ ∞

−∞
ω1χ

′′
B(ω1)|J̃(ω1)|2dω1. (3.29)

Under steady state coupling (dJ/dt = 0), the force is fully reversible and there is no

power dissipation.

When J changes slowly (but not infinitely slowly), then there should be a velocity-

dependent dissipation associated with the relative motion of the molecules. We make

the ansatz that the force has the form:

f = A(z) − Γ(z)ż, (3.30)

where A(z) is the conservative part of the force, and Γ(z) is a friction coefficient. Now

we evaluate A(z) and Γ(z). We may rewrite Eq. 3.24 as

f =
∂J

∂z

∫ ∞

0

G
(1)
B (τ)J(t− τ)dτ. (3.31)
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The function G
(1)
B (τ) is a rapidly decreasing function of τ . Thus in the integral of

Eq. 3.31 we may expand J(t− τ) as

J(t− τ) = J(t) − τ
∂J

∂z
ż, (3.32)

whereupon Eq. 3.31 becomes

f =
∂J

∂z

(

J(t)

∫ ∞

0

G
(1)
B (τ)dτ − ∂J

∂z
ż

∫ ∞

0

τG
(1)
B (τ)dτ

)

. (3.33)

The first term in the parentheses of Eq. 3.33 only depends on the instantaneous value

of J . Evaluating the integral yields

A(z) =
∂

∂z

1

2
χ′

B(0)J2, (3.34)

a result we obtained previously. The second integral may be evaluated by integration

by parts, and yields a velocity-dependent force

Γ(z) =

(
∂J

∂z

)2
∂χ′′

B(ω)

∂ω

∣
∣
∣
∣
ω=0

. (3.35)

Thus the nonconservative part of the van der Waals force depends on the slope of the

imaginary part of χ
(1)
B (ω) at ω = 0. The most surprising result of this thesis is that

when the interacting molecules are out of equilibrium, Γ(z) may be either positive or

negative, implying that the possibility of negative friction. We will show this in the

next section.

3.5 Examples

We now calculate the interaction force for molecules in various nonequilibrium situa-

tions. For consistency with other treatments we classify the effects by their order in J
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rather than by their order in perturbation theory, e.g. the van der Waals force which

is second order in J depends on the linear response function, χ
(1)
B (ω). We examine

modifications to the van der Waals force when the molecules are at different tempera-

tures or subject to time-dependent coupling. For equilibrium interactions, the forces

to third and fourth order in J are rarely of interest (although they are important for

matter-antimatter interactions.1). Third and fourth order forces may be significant

for nonequilibrium interactions.

3.5.1 First order interaction

Interactions that are first order in the coupling may arise in two ways: either both

molecules may have permanent moments, 〈qa(t)〉a0 6= 0 and 〈qb(t)〉b0 6= 0, or an

external perturbation such as an optical field may impose correlated fluctuations in

〈qa(t)〉 and 〈qb(t)〉.

If there are permanent moments, then the zeroth order value of B is

〈
B(0)(t)

〉
=

〈

B̂+(t)
〉

0

= 〈q̂a(t)〉a0 〈q̂b(t)〉b0 , (3.36)

whence the first order interaction energy is

∆F (1)(t) = −J(t) 〈q̂a(t)〉a0 〈q̂b(t)〉b0 . (3.37)

This static energy is easily accounted for e.g. by summing the Coulomb interactions

between fixed charges. The case of an external field that imposes correlated fluctua-

tions is the subject of Chapter 5.

1The dispersion force between two hydrogen atoms is the same as that between a hydrogen and
an antihydrogen, up to third order in perturbation theory. The first term for which these interactions
differ is proportional to r−11. [124, 33]
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3.5.2 Second order interaction, different temperatures

Now we calculate contributions to the intermolecular force arising from the linear

response function, R
(1)
B (t, t1), when each molecule is at thermal equilibrium (although

the molecules may be at different temperatures). In the absence of permanent mo-

ments or externally applied fields, this second order interaction is the dominant con-

tribution to the intermolecular force.

In the notation of Chapter 1, R
(1)
B (t, t1) = R+−

B (t, t1). Using Eq. 2.15 we factor

the first order joint response function in terms of single-molecule GRFs:

R+−
B (t, t1) = R+−

a (t, t1)R
++
b (t, t1) +R++

a (t, t1)R
+−
b (t, t1). (3.38)

The function R+−
j (t, t1) gives the response of coordinate 〈qj(t)〉 to a perturbation

−f(t1)qj . The function R++
j (t, t1) is the two-time autocorrelation function of oper-

ator q̂j(t). We thus arrive at the physical picture that R+−
B arises from molecule

b responding to fluctuations of a and vice versa. This picture is the rigorous ba-

sis for the semiclassical notion that the van der Waals force arises from fluctuating

dipole-induced dipole interactions.

When both molecules are at their respective thermal equilibria, then the correla-

tion functions of the individual molecules are time-translation invariant, so we may

use the Green functions G+−
j (τ1) and G++

j (τ1). Thus the joint response function is

also time-translation invariant: G+−
B (τ1) = G+−

a (τ1)G
++
b (τ1) +G++

a (τ1)G
+−
b (τ1). The
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single-molecule GRFs are related to single-molecule susceptibilities by

G+−
j (τ1) =

i

π
θ(τ1)

∫ ∞

−∞
α′′

j (ω)e−iωτ1dω (3.39a)

=
1

2π

∫ ∞

−∞
αj(ω)e−iωτ1dω (3.39b)

G++
j (τ1) =

~

2π

∫ ∞

−∞
α′′

j (ω) coth

(
~ωβj

2

)

e−iωτ1dω, (3.39c)

where β ≡ 1/kBT and the single-molecule susceptibility is αj(ω) ≡ α′
j(ω) + iα′′

j (ω).

The equivalence of Eqs. 3.39a and 3.39b can be established by application of a

Kramers-Kronig relation. Eq. 3.39c is a statement of the fluctuation dissipation the-

orem for molecule j at its local temperature. The operator q̂j(t) fluctuates because

1) qj does not commute with the free-particle Hamiltonian and 2) each molecule is

subject to thermal disturbances. It is noteworthy that although the system as a whole

need not have a temperature, we can divide it into thermalized pieces on which we

can apply the fluctuation dissipation theorem.

Converting G+−
B (τ1) (Eq. 3.38) to the frequency domain, we get

χ
(1)
B (ω) =

~

2π

∫ ∞

−∞
dω1

[

coth

(
~βbω1

2

)

α′′
b (ω1)αa(ω − ω1) + coth

(
~βaω1

2

)

α′′
a(ω1)αb(ω − ω1)

]

.

(3.40)

Eq. 3.40 is the most general form of the van der Waals susceptibility for systems

at local thermal equilibrium. From it we can calculate the force and dissipation for

arbitrary time-dependent coupling.

Constant coupling

Eq. 3.40 exhibits several subtle features so we now explore its limits in detail. To

calculate the interaction energy for constant coupling we need only χ
(1)
B (0), in which

case the symmetry properties of αa(ω) and αb(ω) can be used to simplify Eq. 3.40.
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The product coth(~βω/2)α′′(ω) is an even function of ω, so only the even (real)

components of αa(ω) and αb(ω) survive the integral. Making use of the fact that

α′(ω) = α′(−ω) we get

χ
(1)
B (0) =

~

2π

∫ ∞

−∞
dω

[

coth

(
~βbω

2

)

α′
a(ω)α′′

b (ω) + coth

(
~βaω

2

)

α′
b(ω)α′′

a(ω)

]

.

(3.41)

Eq. 3.41 has a simple physical interpretation. In the first term of the integrand, the

quantity coth(~βbω/2)α′′
b (ω) represents the fluctuations of b. α′

a(ω1) is the in-phase

response of a to these fluctuations. In the second term of the integrand the roles of

a and b are reversed.

A delicate cancellation in Eq. 3.41 occurs in the case of global thermal equilibrium

(βa = βb = β) that does not occur when βa 6= βb. This cancellation leads to an

equilibrium force that is, in general, much weaker than the nonequilibrium force. In

the equilibrium case we can factor out coth(~ωβ/2) to get

χ
(1)
B (0) =

~

2π

∫ ∞

−∞
dω coth

(
~βω

2

)

[α′
a(ω)α′′

b (ω) + α′′
a(ω)α′

b(ω)]. (3.42)

McLachlan showed how to transform this integral by analytic continuation to complex

frequencies. The polarizabilities in the integrand can be written Im(αaαb). However,

Re(αaαb) is an even function of frequency, so it gives no contribution to the integral,

except for the pole of coth(~βω/2) at ω = 0. Taking the principal value of the integral

eliminates this contribution. Thus

χ
(1)
B (0) =

~

πi
P
∫ ∞

−∞
dω

1

2
coth

(
~βω

2

)

αa(ω)αb(ω). (3.43)

Extending the contour as shown in Figure 3.1, the integral picks up contributions from

the poles of 1
2
coth(~βω/2), located at the Matsubara frequencies ωn = n2πi/β~. Each
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Figure 3.1: Contour used to evaluate Eq. 3.41. The integrand has poles coming from
the coth function (×), αa (◦) and αb (•).

pole has a residue of (β~)−1, so the contribution from all the poles is

χ
(1)
B (0) = 2kBT

∞∑

n=0

′αa(iωn)αb(iωn), (3.44)

where the prime indicates a half contribution from the pole at ω = 0. The change in

free energy ∆F = −1
2
χ

(1)
B (0)J2 reproduces the McLachlan formula, Eq. 3.12.

The methods of analytic continuation and contour integration do not yield any

simplification when βa 6= βb. However, χ
(1)
B (0) can be evaluated directly from Eq. 3.41,

provided a model is specified for the single-molecule polarizabilities, αj(ω). We con-

sider two interacting simple harmonic oscillators, with resonant frequencies ωa and

ωb. For simplicity we assume they both have the same damping constant, γ � ωa, ωb.

The polarizabilities in this model are

αj(ω) = −
µ2

j

~

(
1

ω − ωj + iγ
− 1

ω + ωj + iγ

)

, (3.45)

where µj is the transition dipole strength of oscillator j. If the oscillators are at the
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same temperature, β, then in the limit γ → 0+, Eq. 3.41 (or Eq. 3.44) evaluates to

χ
(1)
B (0) =

2µ2
aµ

2
b

~(ω2
a − ω2

b )

[

ωa coth

(
~ωbβ

2

)

− ωb coth

(
~ωaβ

2

)]

. (3.46)

When the resonance frequencies are equal (i.e. ωa = ωb ≡ ω0) a cancellation prevents

divergence of Eq. 3.46, which becomes

χ
(1)
B (0) =

µ2
aµ

2
b

2~ω0
csch2

(
~ω0β

2

)

[~ω0β + sinh(~ω0β)]. (3.47)

For ωa ≈ ωb, Eq. 3.47 gives χ
(1)
B (0) ∝ (ωa +ωb)

−1, so the force has no special features

at ωa = ωb.

Now we consider oscillators at different temperatures. In the limit γ → 0+, α′′
j (ω)

takes the simple form:

α′′
j (ω) =

πµ2
j

~
[δ(ω − ωj) − δ(ω + ωj)]. (3.48)

Inserting this expression into Eq. 3.41 yields

χ
(1)
B (0) =

2µ2
aµ

2
b

~(ω2
a − ω2

b )

[

ωa coth

(
~ωbβb

2

)

− ωb coth

(
~ωaβa

2

)]

, (3.49)

which differs from Eq. 3.46 in the temperature arguments. If βa 6= βb, then the

cancellation no longer occurs in Eq. 3.49 as ωa → ωb. χ
(1)
B (0) ∝ (ωa − ωb)

−1 diverges,

in a direction determined by the sign of βa−βb and ωa−ωb: If particle a is hotter and

ωa < ωb, then χ
(1)
B (0) diverges positively (corresponding to a strong attractive force).

Switching the temperature difference or the relative frequencies reverses the direction

of the divergence, leading to a strong repulsive force. The sign of the divergence can

be easily understood by picturing the field from the hotter oscillator driving the cooler

oscillator. If the hotter oscillator has the lower resonance frequency, then the cooler

oscillator can respond almost instantaneously to the driving force, and the motion
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of the two is correlated, leading to an attractive force. If the hotter oscillator has

the higher resonance frequency, then the response of the cooler oscillator is 180◦ out

of phase–it can never “catch up”–and so their motion is anticorrelated, leading to a

repulsive force. In physical systems damping will prevent a true divergence in χ
(1)
B (0).

Figure 3.2 illustrates the cancellation that occurs when βa = βb for the interaction

of two simple harmonic oscillators with closely spaced resonant frequencies, and how

the force becomes resonant when βa 6= βb.

Figure 3.3 shows the steady state interaction force (f ∝ χ
(1)
B (0)) as a function of

the resonant frequencies of the oscillators ωa and ωb and their inverse temperatures

βa and βb. The equilibrium force (βa = βb) displays no resonance at ωa = ωb,

since it depends only on (ωa + ωb)
−1. The nonequilibrium force (βa 6= βb) has a

contribution proportional to (ωa−ωb)
−1. This contribution yields a chemically specific

force, in the sense that the force diverges if the two molecule have closely spaced

resonant frequencies. The divergent force can be either attractive or repulsive, and is

accompanied by a resonance in the rate of heat transfer from the hotter particle to

the colder particle.

Time-dependent coupling

When the intermolecular coupling depends on time, there is the possibility of energy

dissipation associated with the van der Waals force. First we study the dissipation

at zero temperature, and then with the molecules at finite, different temperatures.

At zero temperature all the population resides in the ground state, while the

coupling J connects the ground state to the state with both molecules excited. The

zero-temperature van der Waals response function in the harmonic oscillator model
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Figure 3.2: Contributions to the integral of Eq. 3.41 for the interaction of two simple
harmonic oscillators with closely spaced resonant frequencies, ωb < ωa. Left column:
fluctuations of b (coth(~βbω/2)α′′

b (ω); dashed), and the response of a (α′
a(ω); solid).

Center column: fluctuations of a (coth(~βaω/2)α′′
a(ω); dashed), and the response of

b (α′
b(ω); solid). Right column: integrand of Eq. 3.41. Top row: global thermal

equilibrium. The contributions from the first two columns lead to an integrand in
which the positive and negative parts nearly cancel. Middle row: oscillator b is hotter
(βb < βa). The fluctuations of b have a larger impact on a than the fluctuations of

a on b. The positive contribution to the integrand dominates, so χ
(1)
B (0) is large and

positive, and the force is strongly attractive. Bottom row: oscillator a is hotter. The
strong fluctuations of a occur at a frequency where α′

b(ω) is negative. The negative

contribution to the integrand dominates, so χ
(1)
B (0) is large and negative, and the

force is strongly repulsive.
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Figure 3.3: Interaction force of two harmonic oscillators as a function of their res-
onant frequencies, ωb/ωa and their temperatures, βb/βa. The red line indicates the
isothermal case, for which the interaction energy is continuous at ωb = ωa. When the
oscillators are at different temperatures there is a resonance in the force at ωb = ωa.
The steady state force may even become repulsive. The dimensionless resonant fre-
quency of oscillator a is βa~ωa = 1, and its linewidth is βa~γ = .03
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is

χ
(1)
B (ω) = −µ

2
aµ

2
a

~

(
1

ω − (ωa + ωb) + 2iγ
− 1

ω + (ωa + ωb) + 2iγ

)

. (3.50)

The dissipative component of the force reaches a maximum when the coupling J̃(ω)

has a component at frequency ωa +ωb. When the coupling is driven above resonance,

the intermolecular force switches sign and becomes repulsive. The dissipated energy

goes into exciting internal modes of the molecules. In molecular beam experiments

or high temperature gasses, the duration of a close-encounter of two molecules may

be comparable to the inverse excitation frequency. A close-encounter may leave both

molecules excited, with a concomitant decrease in the translational kinetic energy,

even without any electron-electron overlap between the molecules.

Except for the case of high-energy gas-phase collisions, the optical frequency ωa +

ωb is typically much higher than any frequency component of the coupling that arises

from relative motion (this is the basis of the Born-Oppenheimer approximation).

However, the present formalism also includes contributions to the single-molecule

polarizabilities, and hence the force, from low-frequency vibrational modes, which

could readily couple to intermolecular motions in condensed matter.

Now we consider a time-dependent interaction when the molecules are at finite,

different temperatures. χ
(1)
B (ω) may be evaluated in the harmonic oscillator model

in the limit γ → 0+. The resulting complicated expression is noteworthy for its

denominator:

χ
(1)
B (ω) = −

(
2µ2

aµ
2
b

~

)
ωb(ω

2 + ω2
a − ω2

b ) coth
(

~ωaβa

2

)
+ ωa(ω

2 − ω2
a + ω2

b ) coth
(

~ωbβb

2

)

(ω − ωa − ωb)(ω + ωa − ωb)(ω − ωa + ωb)(ω + ωa + ωb)
.

(3.51)

The denominator has resonances at ω = ±ωa ± ωb, so for ωa ≈ ωb, a resonance in the

force (and an accompanying dissipation) may occur at very low frequencies. These



58

difference-frequency resonances arise because at finite temperature, there is some

population in the first excited state of each oscillator and the coupling J connects the

two singly excited states. For finite γ, there is no analytical expression for χ
(1)
B (ω),

but we can evaluate it numerically from Eq. 3.40. The result is plotted in Figure 3.4.

When βa = βb, the imaginary part of the joint response function, χ′′
B(ω), is pos-

itive for all ω > 0. This implies that there is viscous dissipation associated with a

rapid change in the intermolecular separation. However, if ωa > ωb and βaωa < βbωb,

then
∂χ′′

B

∂ω
|ω=0 is negative, which implies that the friction coefficient, Γ(z) is also neg-

ative. Energy is transferred from the oscillators to motion along the intermolecular

coordinate. We thus have a heat engine, in which the van der Waals force is the

energy transducer. Extraction of energy from the system is accompanied by heat

flow from the hotter particle to the colder particle. The dissipative component of

the van der Waals force allows for conversion between intramolecular excitation and

intermolecular work, mediated purely by the fluctuating electromagnetic field. Such

a mechanism is required for the system to reach thermal equilibrium.

One of the principal results of the theory of dynamic Casimir forces is that there is

a friction associated with tangential motion of two noncontacting plates in vacuum.

The dissipated energy goes into exciting electromagnetic modes of the intervening

vacuum [94]. Dynamic Casimir forces have only been considered for plates at the same

temperature. Consider two parallel plates, each composed of the harmonic oscillator

“molecules” we studied in this last section. If the density of each plate is low, then

the interaction between the plates may be approximated by pairwise summation of

interactions between the molecules in each plate. Our results suggest that when the

two plates are held at sufficiently different temperatures, then the vacuum friction
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Figure 3.4: Reversible (fr ∝ χ′(ω)) and irreversible (fi ∝ χ′′(ω)) components of the
intermolecular force for coupling that oscillates at frequency ω. Resonances in the
force occur at ω = ±ωa ± ωb. The positive-frequency dissipation may be negative if
the higher frequency particle is hot enough. The dimensionless resonant frequencies
are βa~ωa = 1, βa~ωb = 1.5 and the linewidths are βa~γ = 0.08

can be made to vanish, or even become negative! This negative friction is entirely

consistent with thermodynamics, because it is accompanied by a flow of heat from

the hotter plate to the colder plate.

Fluctuations in the force

In Chapter 2 we developed a procedure for expressing the joint multitime correla-

tion function
〈

T B̂+(t)B̂−(tn)B̂−(tn−1) . . . B̂−(t1)
〉

0
in terms of multitime correlation

functions of the individual molecules in either the ± or L,R representations. We

were interested in a B̂+ followed by a string of B̂− superoperators because this se-

quence appears in the definition of the response function R
(n)
B . However, we can also

consider a B̂+ superoperator followed by an arbitrary time-ordered string of B̂+ and
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B̂− superoperators. The same factorization procedure can be applied to any such

sequence.

Of particular interest is the two-point correlation function of B, R++
B (t, t1) ≡

〈

T B̂+(t)B̂+(t1)
〉

0
, or

G++
B (τ1) ≡

〈

T B̂+(τ1)B̂+(0)
〉

0
. (3.52)

This correlation function is a measure of the fluctuations in B, which may lead to

significant fluctuations of the force. Using the identity B+ = [qaqb]+ = qa+qb+ +

1
4
qa−qb−, we factor G++

B (τ1) using the single-molecule Green functions:

G++
B (τ1) = G++

a (τ1)G
++
b (τ1) +

(
~

2i

)2
(
G+−

a (τ1)G
+−
b (τ1) +G+−

a (−τ1)G+−
b (−τ1)

)
.

(3.53)

Thus the same single-molecule quantities that determine the van der Waals response

function also determine the fluctuations in B.

In the preceding section we considered the case of molecules at different temper-

atures to calculate G+−
B (τ1). Here we apply the same Green functions (Eqs. 3.39a

- 3.39c) to calculate G++
B (τ1). Taking the Fourier transform of Eq. 3.53 yields,

G̃++
B (ω) =

~
2

4π2

[(

α′′
a(ω) coth

~ωβa

2

)

∗
(

α′′
b (ω) coth

~ωβb

2

)

+ α′′
a(ω) ∗ α′′

b (ω)

]

(3.54a)

=
~

2

4π2

∫ ∞

−∞
dω1α

′′
a(ω1)α

′′
b (ω − ω1)

[

coth
~ω1βa

2
coth

~(ω − ω1)βb

2
+ 1

]

,(3.54b)

where the ∗ operator denotes a convolution.

In the low temperature limit, the operator B undergoes zero-point fluctuations,

whose origin is the zero-point fluctuations of q̂a and q̂b of the individual molecules.

The term in the brackets in Eq. 3.54b is zero for ω1 < 0 and ω1 > ω, and is equal to

2 for 0 < ω1 < ω. Thus

G̃++
B (ω) =

~
2

2π2

∫ ω

0

dω1α
′′
a(ω1)α

′′
b (ω − ω1) kBT � ~ω0. (3.55)
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In the high temperature limit, q̂a and q̂b each act as independent fluctuating

classical quantities. The fluctuation term dominates Eq. 3.53, so we have the classical

relation

G++
B (τ1) = G++

a (τ1)G
++
b (τ1) kBT � ~ω0. (3.56)

The fluctuations of the coordinate B are given by 〈B2〉 = G++
B (0), and the individual

Green functions are given by the classical fluctuation dissipation relation

G++
j (0) =

〈
q2
j

〉
= kBTjα

′
j(0). (3.57)

Substituting Eq. 3.57 into Eq. 3.56 we see that for systems at the same temperature

the fluctuations in B are given by:

〈
B2
〉

= (kBT )2α′
a(0)α′

b(0). (3.58)

Contrast this with the average value of B for constant coupling J , derived from the

high temperature limit of Eq. 3.44:

〈B〉 = JkBTα
′
a(0)α′

b(0). (3.59)

By assumption J � kBT , or the perturbative approach here would be invalid, so the

fluctuations in the intermolecular force are far larger than the force itself:

〈B〉
〈B2〉1/2

=
J 〈q2

a〉
1/2 〈q2

b 〉
1/2

kBT
. (3.60)

That is, the mean force is less than its fluctuations by the ratio of the mean interaction

energy to kBT .

Bartolo and coworkers recently studied fluctuations in the Casimir-like forces that

arise between plates in correlated fluids [8]. They found significant fluctuations, but

only considered the classical (high-temperature) limit. The present results describe
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the fluctuations throughout the classical and quantum regime, albeit for the nonre-

tarded interaction.

An alternative method to evaluate the fluctuations in B is to apply to fluctuation-

dissipation theorem directly to the van der Waals response function. Namely, if there

is dissipation from motion along coordinate B, then, by the fluctuation dissipation

theorem, there are spontaneous fluctuations in that coordinate. While the approach

of the previous section only required local thermal equilibrium, this approach requires

global thermal equilibrium, i.e. the molecules must be at the same temperature.

The fluctuation dissipation theorem applied to the van der Waals response func-

tions states

G̃++
B (ω) =

~

2π
χ′′

B(ω) coth

(
~ωβ

2

)

. (3.61)

Taking χ′′
B(ω) from Eq. 3.40, should lead to an expression for G̃++

B (ω) that is equiv-

alent to Eq. 3.54b in the limit βa = βb. Unfortunately I did not find a simple way to

prove this. Low-frequency fluctuations in the van der Waals force may be significant

in reaction kinetics where the rate depends not on the mean force but on its extrema.

3.6 Higher order forces

The Liouville space superoperator formalism enables us to calculate contributions to

the intermolecular force beyond second order in J . From Eq. 2.15, the second-order

response function of the joint coordinate B to coupling J is

R
(2)
B (t, t2, t1) = R+−−

a (t, t2, t1)R
+++
b (t, t1, t2)

+R++−
a (t, t2, t1)R

++−
b (t, t1, t2)

+R+++
a (t, t2, t1)R

+−−
b (t, t1, t2). (3.62)
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This expression contains the second order response functions of the individual molecules

(R+−−
a and R+−−

b ), the third moment of the fluctuations of each molecule (R+++
a and

R+++
b ), and the response of the second moment of the fluctuations to a perturbation

(R++−
a and R++−

b ). Similar expressions may be generated to arbitrary order.

3.7 Discussion

In this chapter we studied the forces between idealized “molecules,” coupled to baths

at different temperatures and subject to a time-dependent coupling. By varying the

temperatures we could make the force attractive or repulsive, and we could make

the friction positive or negative. Of course it is implausible to hold two molecules in

solution at different temperatures. Furthermore, the temperatures must be compara-

ble to the excitation energies, which would be unreasonably hot for most electronic

transitions. However, the above results also apply to closely spaced micromechani-

cal components, which may exist at different temperatures and have lower frequency

electronic modes. There has recently been interest in using van der Waals-Casimir

forces to actuate microelectromechanical systems (MEMs) [32]. These efforts have

been hindered by the fact that the force is always one-way: it can bring two ele-

ments together, but a separate force is needed to take them apart. The results of

this section show that it is possible to reverse the sign of the force through careful

choice of materials and by applying temperature gradients. Friction is a second major

obstacle in building MEMs devices. The ability to generate negative friction under

a sufficiently strong temperature gradient could, in principle, solve this problem. In

the next chapter I consider the forces between molecules in athermal distributions,

where one molecule is in an excited state.



Chapter 4

Excited state forces

We calculate the nonretarded interaction force between two molecules, one of which is

excited. Previous calculations of this force have focused on few-level gaseous atoms,

in which case the Hamiltonian may be diagonalized exactly [177, 149, 150, 203].

These calculations show that optical excitation can dramatically alter the long-range

force. However, it is not clear how or whether these formal calculations apply to real

multilevel molecules in the presence of relaxation and dephasing.

We show that the coupling responsible for fluorescence resonance energy transfer

(FRET) generates a mechanical force that is distinct from the van der Waals force

between ground-state molecules and can be either attractive or repulsive. The under-

lying potential has the same 1/r6 distance-dependence as the rate of FRET and the

two are connected by a Kramers-Kronig relation. Just as the rate of FRET can be de-

rived either classically or quantum mechanically, so too can the interaction potential.

Because of the FRET-force, time-resolved FRET measurements contain information

on the mechanical stiffness of the matrix containing donor and acceptor. The FRET

force is ∼ 50 times stronger than the ground state van der Waals force.

64
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4.1 Eigenstate picture

Intermolecular forces with one molecule excited were first studied via perturbation

theory in the 1930’s by Eisenschitz and London [58] and by King and Van Vleck [98].

The eigenstate approach is based on diagonalizing the Hamiltonian of the interacting

molecules, either exactly or approximately via perturbation theory. Once the global

eigenstates are known, the distance-dependent energy of each eigenstate determines

the intermolecular force when the system is in that state.

For dissimilar molecules, the energy can be calculated to second order in per-

turbation theory via a variant of Eq. 3.7. Suppose molecule b is excited to state i.

Then

U = −1

~
J2
∑

{m,n}

|µa
0mµ

b
in|2

ωa
m0 + ωb

ni

. (4.1)

Some terms in Eq. 4.1 involve downward transitions of molecule b, in which case ωb
ni

is negative. If molecule a has a transition frequency ωa
m0 ≈ −ωb

ni, then there is a

resonant contribution to the denominator, which may be positive or negative. For

molecules with closely spaced transitions, these resonant denominators dominate the

interaction, leading to strongly attractive or repulsive forces.

If the coupling energy, V = Jµaµb, is larger than the splitting between inter-

acting levels (e.g. for any interaction of identical molecules with one excited), then

the perturbative assumption underlying Eq. 4.1 is invalid and it is necessary to use

degenerate perturbation theory. For interaction of identical molecules, the dipole–

dipole coupling splits the doubly degenerate first excited state in first order. The

corresponding eigenstates have a delocalized excitation (called a Frenkel exciton) in a
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symmetric or antisymmetric configuration over both molecules. Note that the inter-

molecular interaction is dipole-dipole, and not due to electron overlap. Thus, while

excitons are delocalized, electrons are firmly bound to the individual molecules.

4.1.1 Two-level system

As a simple application of the eigenstate picture, consider the interaction of two

identical two-state fluorophores, one excited and the other in the ground state. Each

molecule has a resonant frequency of ω0, and the coupling between the molecules is

V = Jµaµb. Eq. 3.7 shows that the ground state shift is U = −1
2
V 2/~ω0. The singly

excited states of the dimer are split by the coupling, and have energies U = ~ω0 ±V .

These states are illustrated in Figure 4.1. For dipole-dipole coupling (J ∝ r−3), a

dimer in the lower one-exciton state experiences a r−3 attraction and a dimer in the

upper one-exciton state experiences a r−3 repulsion.

Niemax detected these first-order forces between excited atoms in the gas phase [142].

He found the force to be up to four orders of magnitude stronger than the ground

state force. However, it is an experimental fact that in condensed matter there is

rapid thermalization within the one-exciton manifold. A system in the repulsive up-

per state quickly relaxes to the attractive ground state on a timescale of picoseconds,

so the repulsive first-order force is not detectable in solution.

We may patch the eigenstate model by assuming thermal equilibrium between the

two one-exciton states on a timescale short compared to radiative decay to the ground

state. Considering just the states with energy U = ~ω0 ± V , the partition function is

Z = 2e−β~ω0 cosh(βV ), whence the free energy of the excited dimer, F = −kBT lnZ



67

0

2

2 ω!
V−

V−0ω!

V+0ω!

0ω!

-1 

+1 

-2 

+2 

H-dimer J-dimer 

Figure 4.1: Level-splitting of identical 2-level molecules coupled through a dipole-
dipole interaction. In an H-dimer the transition dipoles are side-by-side. The level
shifts are ±1 in units of µaµb/4πε0r

3. The lower one-exciton state (shaded) has zero
dipole strength and thus does not absorb or emit light. In a J-dimer the transition
dipoles are end-to-end. The level shifts are ±2 in units of µaµb/4πε0r

3. The upper
one-exciton state (shaded) has zero dipole strength.
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is

F = ~ω0 − kBT ln[2 cosh(V/kBT )]. (4.2)

In this case the force is always attractive because at any finite temperature there

is a greater population in the lower one-exciton state than in the upper one-exciton

state. As the intermolecular separation increases, the interaction free energy switches

from first-order (∆F ∝ −V for V > kBT ) to second-order (∆F ∝ −V 2/kBT for

V < kBT ). Figure 4.2 illustrates this transition. Thermalization typically occurs over

several picoseconds in water. On a much longer timescale (several nanoseconds) the

one–exciton states decay via spontaneous emission or a nonradiative process, and the

interaction free energy returns to its equilibrium value, ∆F ∝ −V 2/~ω0, assuming

kBT � ~ω0. Typically ~ω0 ∼ 50kBT , so the excited-state force is roughly 50 times

stronger than the ground state force, even in the weak-coupling regime V < kBT . We

will see that this enhancement of excited state forces persists in the more detailed

models considered below.

The eigenstate picture has a number of shortcomings for calculating intermolecular

forces. Excited state forces should be time dependent: a sequence of optical pulses

puts the system in a time–dependent superposition of excited states, which eventually

relax back to the ground state. Yet the eigenstate picture is, by definition, time–

independent. The source of this problem is that the eigenstates calculated above are

not the true system eigenstates. Each molecule has a vast number of modes in its

environment that are coupled to its principle electronic coordinates. Relaxation arises

from a slow leakage of energy from the modes explicitly considered to the continuum

of environmental modes.

The environmental modes introduce fluctuations in the energy of each eigenstate
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Figure 4.2: Log-log plot of the free energy of a dipole-dipole coupled dimer within
the one-exciton manifold as a function of the intermolecular separation. The critical
separation, r0, corresponds to the solution of V (r) = kBT , where V (r) = J(r)µaµb.
When r � r0 (V � kBT ), essentially all of the population is in the lower excitonic
state, so the free-energy is first-order in V . When r � r0 (V � kBT ), the population
is split roughly equally between the lower and upper states. The excess in the lower
state is proportional to V/kBT , so the free-energy is proportional to V 2/kBT .



70

of magnitude ∼ kBT . These fluctuations, which affect the denominators of Eq. 3.7

and Eq. 4.1 are unimportant for the ground state force because for most electronic

transitions, kBT � ~ω0. In fact, it is common to replace the denominator for each

term in the sum in Eq. 3.7 by an “average” excitation energy, without much loss

in accuracy. However, for near–resonant excited–state forces, interactions with the

environment are crucial because the denominator of Eq. 4.1 may be very small. In-

teractions with the environment also play a crucial role in spectroscopy: they cause

spectral broadening, fluorescence Stokes shifts, and spontaneous emission. Building a

microscopic model that incorporates these environmental effects is a challenging and

complicated task, which we do not attempt here. Rather, we seek relations between

spectroscopic quantities and mechanical forces that are independent of the details of

the structure of the molecule or its interactions with the environment.

4.2 FRET force

In this section we study the force with one molecule excited for arbitrary donor and

acceptor spectra, in the limit where the intermolecular coupling is weak compared

to the coupling to the bath. This limit corresponds to the regime of validity of the

Förster theory of fluorescence resonance energy transfer (FRET). There is an intimate

connection between force and the rate of FRET.

FRET from an excited donor molecule to a nearby acceptor plays a major role

in photosynthesis, carrying energy from chlorophyll molecules to the photosynthetic

reaction center [189]. FRET also provides a nanoscale ruler: when donor and ac-

ceptor are attached to a biomolecule, the rate of FRET indicates the donor-acceptor

distance [76, 181]. A process analogous to FRET involving vibrational excitations
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and energy transfer may play an important role in transport of energy within and be-

tween proteins [112] and was recently observed experimentally for OH stretches in wa-

ter [201]. There has been a resurgence of interest in FRET in connection with single-

molecule studies as a probe for conformations of polymers and biomolecules [197].

FRET and long-range dispersion forces both arise from a coupling between the

transition-dipoles of two molecules. Thus it is reasonable to expect a change in the

long-range intermolecular force to accompany the process of FRET. This FRET force

(FF) has implications both for photosynthesis and for biophysical FRET studies. A

force accompanying photosynthetic FRET may lead to functionally significant con-

formational changes in the protein scaffold around chlorophyll molecules. Biophysical

FRET studies usually assume that the FRET pair does not affect the molecule under

study. While FF tends to be weak, corresponding to an interaction free-energy of

∼ 0.1kBT at a donor-acceptor separation of 1 nm, this is still ∼ 50 times stronger

than the ground state van der Waals force. Small changes in intermolecular force can

have a macroscopic effect near a critical point, where all other forces along a confor-

mational coordinate vanish. Polymer solutions can be brought near a critical point

by adjusting temperature and solvent composition [67]. Moreover, the force creates

the possibility to use light to control the conformation of a biomolecule and to probe

its mechanical response.

One way to think about the FF is as a generalization of optical trapping. A

polarizable particle (atom, molecule, colloid, etc.) experiences a force along an electric

field gradient. In laser tweezers, tight focusing of the laser beam creates the field-

gradient [37]. It has been proposed to use sharp metal tips to enhance optical fields

and field-gradients [27]. Consider the limit in which the sharp metal tip is shrunk
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down to a single molecule. The near-field of an excited molecule has strong fields

and strong field-gradients. Thus the FF can be thought of as optical trapping of the

acceptor by the near-field of the excited donor.

This electrodynamic picture can be formally established by using the multipolar

Hamiltonian in which all intermolecular interactions are mediated by photons, so there

is no explicit donor-acceptor coupling in the Hamiltonian [146]. The Coulomb force

is recovered in the near-field limit, where retardation is neglected. This picture can

be obtained classically because the Hamiltonian for a harmonic oscillator is identical

in classical and quantum mechanics. By modelling the acceptor as a collection of

harmonic oscillators, and then lumping this response into the complex polarizability

function, α(ω), the system appears to be completely classical [109, 132].

A second way to understand the FRET-force is to consider the eigenstates of the

donor and acceptor in the minimal coupling Hamiltonian, with the Coulomb coupling

included explicitly [100, 101]. In this picture the force arises from a radiative shift in

the energy levels of the donor induced by its coupling to the acceptor. The minimal

coupling and multipolar Hamiltonians are related by a canonical gauge transforma-

tion and the two descriptions are both exact and equivalent, even though they offer

completely different physical pictures [100, 101, 132, 137].

A third way to calculate the FRET-force is with the superoperator techniques de-

veloped in Chapters 1 and 2. The intermolecular dipole-dipole correlation is factored

in terms of single-molecule absorption and emission spectra. This approach yields

the same results as the other two.
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4.2.1 Electrodynamic derivation

Molecule in a field

A spatially uniform electric field

E(t) = E0 sinωt (4.3)

induces an oscillating dipole moment, pa(t), in a molecule

pa(t) = α′
a(ω)E0 sin(ωt) − α′′

a(ω)E0 cos(ωt) (4.4)

where the frequency-dependent complex polarizability is α(ω) = α′(ω) + iα′′(ω).

The molecule absorbs power P :

P = Eṗa

=
1

2
E2

0ωα
′′
a(ω), (4.5)

where the average is taken over many optical cycles. If the electric field has a power

spectral density, f(ω), where
∫
f(ω) dω = 1, then the molecule absorbs a power per

unit frequency

P (ω) =
1

2
E2

0ωα
′′
a(ω)f(ω) (4.6)

and the total power absorbed is P =
∫∞
0
P (ω) dω.

The molecule also experiences a change in its mean free-energy, U :

U = −1

2
Epa

= −1

4
E2

0α
′
a(ω). (4.7)

If the field has a power spectral density f(ω), then the change in free-energy per unit

frequency is

U(ω) = −1

4
E2

0α
′
a(ω)f(ω), (4.8)
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and the total free energy shift is U =
∫∞
0
U(ω) dω.

Comparison of Eqs. 4.6 and 4.8 shows that the change in free-energy and rate of

excitation (both per unit frequency) are related:

U(ω) = −1

2

(
α′

a(ω)

α′′
a(ω)

)

~K(ω) (4.9)

where we have replaced the power absorbed by the rate of excitation, K(ω) =

P (ω)/~ω.

Field gradients cause the rate of excitation, and hence the free-energy, to depend

on molecular position, r. Molecular anisotropy causes the rate of excitation to depend

on the angle, θ, between the molecular axis and the local field. Making note of these

effects, we get a position and orientation dependent free-energy U(r, θ), which leads

to a force F = −∇U(r, θ) and to a torque τ = −∂U(r, θ)/∂θ.

The electric field, E(t), could come from a light source, or it could be produced

by a nearby excited donor molecule: the acceptor, a, responds the same way regard-

less of the source of the field. When the electric field comes from laser light, the r

and θ dependence of U(r, θ) lead to optical trapping[37] and the optical Kerr effect,

respectively [203, 176]. In this case the r dependence comes from the tight focusing

of the laser beam. When the electric field comes from an excited donor molecule,

the spatial dependence originates from the near-field variation of the field created by

the donor and Eq. 4.9 gives the intermolecular potential associated with FRET. In

principle there is also a torque that seeks to align anisotropic molecules participating

in FRET. This torque will not be considered here.
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4.2.2 Application to FRET

Forster showed that the rate of FRET is[5]

kFRET =
9c4κ2

8πτdr6

∫ ∞

0

fd(ω)σa(ω)

n4(ω)ω4
dω, (4.10)

where τd is the lifetime of the donor, r is the distance between donor and acceptor,

fd(ω) is the normalized emission spectrum of the donor, σa(ω) is the absorption cross-

section of the acceptor, and n(ω) is the refractive index of the medium surrounding

the donor and acceptor [143]. The factor κ ≡ 3(n̂a · r̂)(n̂d · r̂) − n̂a · n̂d takes into

account the relative orientation of donor and acceptor transition dipoles, where n̂a

and n̂d are unit vectors oriented along the transition dipoles of the acceptor and

donor, respectively. To express kFRET in terms of the polarizability we make the

substitution

σa(ω) =
ωα′′

a(ω)

3cε0n(ω)
, (4.11)

so that

kFRET =

∫ ∞

0

3c3κ2

8πε0τdr6

fd(ω)α′′
a(ω)

n5(ω)ω3
dω. (4.12)

The integrand of Eq. 4.12 is precisely the K(ω) in Eq. 4.9. Combining Eqs. 4.9

and 4.12, we find the interaction free-energy associated with FRET

UFRET = − 3~c3κ2

16πε0τdr6

∫ ∞

0

fd(ω)α′
a(ω)

n5(ω)ω3
dω. (4.13)

4.2.3 Kramers-Kronig relations

Both the real and imaginary parts of the molecular polarizability can be readily

computed for models and at various levels of theory. Absorption experiments give

the imaginary part, but the real part is harder to measure. To eliminate α′(ω) in the
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expression for UFRET , we use the Kramers-Kronig formula:

α′
a(ω) =

2

π
℘

∫ ∞

0

ω′α′′
a(ω

′)

ω′2 − ω2
dω′, (4.14)

where ℘ indicates the principal value of the integral. Thus

UFRET = − 3~c3κ2

16πε0τdr6

∫ ∞

0

2

π
℘

∫ ∞

0

fd(ω)ω′α′′
a(ω

′)

n5(ω)ω3(ω′2 − ω2)
dω′ dω (4.15)

This expression almost contains K(ω), except that fd(ω) and α′′(ω′) occur at

different frequencies. We thus define a new quantity, K(ω, ω′):

K(ω, ω′) ≡ 3c3κ2

8πε0τdr6

fd(ω)α′′
a(ω

′)

n5(ω)ω3
. (4.16)

This two-dimensional transition density corresponds to the rate of FRET that would

occur if the spectrum of the acceptor were shifted along the frequency axis relative to

the spectrum of the donor. While this shift cannot be easily realized experimentally

(i.e. it is hard to make a family of molecules with shifted spectra but the same spectral

lineshape), it is easy to compute K(ω, ω′) from a known donor emission spectrum and

acceptor absorption spectrum. In terms of K(ω, ω′),

KFRET =

∫ ∞

0

∫ ∞

0

K(ω, ω′)δ(ω′ − ω) dω′ dω (4.17)

and

UFRET = −~

π

∫ ∞

0

℘

∫ ∞

0

ω′K(ω, ω′)

ω′2 − ω2
dω′ dω. (4.18)

4.2.4 Eigenstate derivation

In the previous section we considered a molecule with arbitrary polarizability, α(ω),

and focused on how α(ω) mediates the response to an electric field. This corresponds

to the multipolar Hamiltonian. In the alternative approach, based on the minimal
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coupling Hamiltonian, we consider the internal eigenstates of the donor and acceptor

molecules, and include the dipole-dipole coupling as a perturbation to these states.

Then the question is, how does the coupling affect the expectation value of the energy?

This calculation closely follows Förster’s original paper on FRET,[153, 2] and yields

the same results as the previous calculation.

In the Wigner-Weiskopff model, when a state, i, is coupled to a broad continuum,

{j}, an effective Hamiltonian arises which adds a self energy to the energy of the

isolated state: Ei → Ei +Ri [137]. Here

Ri = lim
η→0+

∑

j

| Vij |2
Ei − Ej + ıη

(4.19)

where Vij is the matrix element coupling states i and j, and Ei and Ej are the energies

of these states. This self energy is partitioned as,

Ri = Ui −
ı~

2
ki, (4.20)

where the real part, Ui, gives the level shift of state i, and the imaginary part, ki,

gives the rate of decay of state i. The Kramers-Kronig relation between the two

follows immediately from the analytic properties of the self energy, which are a direct

consequence of causality.

Let the initial state, i, correspond to the excited donor and ground state acceptor.

The manifold of final states, {j}, corresponds to the ground state donor and excited

acceptor (we assume that the acceptor has densely distributed levels). Replacing the

sum in Eq. 4.19 by an integral over acceptor states, we find that the rate of energy

transfer is given by Fermi’s golden rule

ki =
2π

~

∫

|Vij |2ρ(Ej)δ(Ei −Ej) dEj (4.21)
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where ρ(Ej) is density of transitions of energy Ej .

The coupling to a continuum also produces an energy-shift, Ui, of the initial state:

Ui = ℘

∫ |Vij |2ρ(Ej)

Ei −Ej
dEj. (4.22)

Förster used Eq. 4.21 to calculate the rate of FRET. We follow his procedure but

apply it to Eq. 4.22 to calculate the energy shift.

The wavefunctions of the donor-acceptor system in its initial and final states are:

Ψi = φ∗
dφaΦ

∗
dΦa

Ψj = φdφ
∗
aΦdΦ

∗
a, (4.23)

where φa and φd are the electronic wavefunctions and Φa and Φd are the nuclear

wavefunctions. The matrix element for the transition is

Vij = 〈Ψj |
e2

4πε0n2r
| Ψi〉

= Ve 〈Φd |Φ∗
d〉〈Φ∗

a |Φa〉. (4.24)

The nuclear components of Vij are the Franck-Condon factors Sd(E
∗
d , Ed) ≡ 〈Φd | Φ∗

d〉

and Sa(Ea, E
∗
a) ≡ 〈Φ∗

a | Φa〉.

There are many ways to arrive at the electronic component of the matrix element,

Ve ≡ 〈φdφ
∗
a |e2/(4πε0n2r) |φ∗

dφa〉. Note that to calculate forces, it is necessary to know

the gradient in Ve at the equilibrium donor-acceptor separation. If the molecules are

neutral and their separation is large compared to their size, then the point dipole

approximation is appropriate:

Ve =
µaµdκ

4πε0n2r3
. (4.25)

For molecules where the separation is small compared to the size, but there is still neg-

ligible electronic overlap (e.g. chlorophyll molecules in the bacterial photosynthetic
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antenna complex), then the point dipole approximation breaks down and Ve must be

calculated numerically, using one of the expansions of Section 3.2 [185]. Standard

quantum chemistry codes exist to do this at varying levels of theory. The coupling

can also be extracted from spectroscopic data: the Davydov splitting in the donor-

acceptor pair is twice the electronic coupling energy [41]. It may be possible to obtain

the gradient of Ve from the pressure-dependence of the the Davydov splitting.

Typically the donor in its excited state occupies a distribution of vibrational en-

ergy levels with probability gd(E
∗
d). Similarly, the acceptor in its ground state occupies

a distribution of vibrational energy levels with probability ga(Ea). The total rate of

FRET is given by the rate for each microstate (E∗
d , Ea) weighted by the probability for

the system to be in that microstate, and summed over all microstates. If gd(E
∗
d) and

ga(Ea) are statistically independent (i.e. they arise from different vibrational modes),

then this sum factors into two components. One component depends only on the

emission spectrum of the donor; the other depends only on the absorption spectrum

of the acceptor. We apply this procedure to compute the energy-shift.

From Eq. 4.22, the total energy shift for all initial states of the donor is:

UFRET =

∫

℘

∫
ρ(Ei) |Vij |2ρ(Ej)

Ei − Ej

dEj dEi. (4.26)

The numerator of the integrand of Eq. 4.26 can be expanded to yield

ρ(Ei) |Vij |2ρ(Ej) = |Ve |2
(∫

gd(E
∗
d)S

2
d(E

∗
d , E

∗
d − Ei) dE

∗
d

)

×
(∫

ga(Ea)S
2
a(Ea, Ea + Ej) dEa

)

, (4.27)

which contains separate integrals over the donor and acceptor coordinates. Each

integral gives an observable. The donor integral is related to the normalized donor
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emission spectrum, fd(ωi), (measured in photons per unit frequency) via[144]

∫

gd(E
∗
d)S

2
d(E

∗
d , E

∗
d − Ei) dE

∗
d =

3πε0~c
3

ω3
i n(ωi)µ

2
dτd

fd(ωi). (4.28)

The acceptor integral is related to the acceptor absorption cross-section, σa(ωj), via

∫

ga(Ea)S
2
a(Ea, Ea + Ej) dEa =

3ε0~cn(ωj)

πωjµ2
a

σa(ωj). (4.29)

If we assume that the index of refraction is weakly dependent on frequency, then

n(ωj)/n(ωi) cancels in the product of Eqs. 4.28 and 4.29. Combining Eqs. 4.26, 4.27,

4.28 and 4.29 and converting to integrals over frequency gives UFRET in terms of

experimentally accessible parameters:

UFRET = −|Ve |2 9~ε20c
4

µ2
aµ

2
dτd

∫

℘

∫
fd(ωi)σa(ωj)

ω3
iωj(ωj − ωi)

dωj dωi. (4.30)

Substituting α′′(ωj) for σ(ωj) (Eq. 4.11) gives

UFRET = −|Ve |2 3~ε0c
3

µ2
aµ

2
dτd

∫

℘

∫
fd(ωi)

n(ωj)ω
3
i

α′′
a(ωj)

ωj − ωi

dωj dωi. (4.31)

Eq. 4.31 contains a Kramers-Kronig relation for α′
a(ωi), so making this substitution

and inserting the point dipole approximation for Ve (Eq. 4.25) yields

UFRET = − 3~c3κ2

16πε0r6τd

∫ ∞

0

fd(ω)α′
a(ω)

n5(ω)ω3
dω, (4.32)

which is exactly the same as the classically derived Eq. 4.13.

4.2.5 Superoperator derivation

Finally, we derive the FF within the superoperator formalism developed in Chapters 1

and 2. We treat the molecular dipole moments, µa and µd, as operators, and define

the dipole-dipole correlation operator B ≡ µdµa. The bimolecular perturbation is
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Hda(t) = −J(t)µdµa. We seek the Green function G+−
B (τ1) that connects 〈B(t)〉 to

J(t− τ1) via

〈B(t)〉 =

∫

G+−
B (τ1)J(t− τ1)dτ1. (4.33)

As in Chapter 3 we apply Eq. 3.38 to factor G+−
B (τ) in terms of single-molecule quan-

tities: G+−
B (τ1) = G+−

a (τ1)G
++
d (τ1) + G++

a (τ1)G
+−
d (τ1). The Förster theory typically

neglects reverse energy transfer from the acceptor to the donor. This is equivalent

to neglecting the term G++
a (τ1)G

+−
d (τ1). Using Eq. 3.39b for G+−

a (τ1) we have in the

frequency domain:

χ
(1)
B (ω) =

∫ ∞

−∞
αa(ω

′)G̃++
d (ω − ω′)dω′. (4.34)

The fluctuations of the donor are related to the donor emission spectrum via

G̃++
d (ω) =

3πε0~c
3

ω3n(ω)τd
[
1

2
(fd(ω) + fd(−ω))]. (4.35)

When calculating χ
(1)
B (0) from Eq. 4.34, only the real part of αa(ω

′) survives the

integral because G̃++
d (ω′) is an even function of frequency. We may rewrite the integral

over the positive ω′-axis only. Under steady-state coupling, the interaction energy is

given by UFRET = −1
2
χ

(1)
B (0)J2. The coupling J is given by:

J =
κ

4πε0n2r3
. (4.36)

Making these substitutions into Eq. 4.34 gives the same expression for the UFRET as

Eqs. 4.13 and 4.32.
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4.2.6 Examples

Lorentzian lineshapes

The Lorentzian lineshape describes the response of a damped harmonic oscillator

(classical or quantum mechanical), and also the linear response of a quantum me-

chanical two-level system. Consider the case where both the acceptor and donor are

characterized by a Lorentzian response, with resonant frequencies ωa and ωd, respec-

tively:

α′
a(ω) =

µ2
a

~

ωa − ω

(ωa − ω)2 + γ2
a

(4.37)

α′′
a(ω) =

µ2
a

~

γa

(ωa − ω)2 + γ2
a

,

and

fd(ω) =
γd/π

(ωd − ω)2 + γ2
d

. (4.38)

Further assume that the index of refraction is weakly dependent on frequency in the

region of interest and the spectra are narrow enough to replace 1/ω3 by 1/ω3
0, where

ω0 ∼ (ωa + ωd)/2. The integrals in Eqs. 4.12 and 4.13 then evaluate to

kFRET =
3c3µ2

aκ
2

8πε0τdn5~ω3
0r

6

γa + γd

(ωa − ωd)2 + (γa + γd)2
(4.39)

and

UFRET =
3c3µ2

aκ
2

16πε0τdn5ω3
0r

6

ωd − ωa

(ωa − ωd)2 + (γa + γd)2

=
ωd − ωa

2(γd + γa)
~kFRET . (4.40)

Eq. 4.40 shows that UFRET vanishes on resonance (ωd = ωa) and in the absence of

spectral overlap (|ωd − ωa | � γd + γa). It is maximized for ωd − ωa = ±(γd + γa). If

ωd > ωa, then UFRET is positive and the force is repulsive.
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The direction of the FF may be rationalized in the same way as the direction of

the van der Waals force between molecules at different temperatures. If the driving

frequency of the excited donor is below the resonant frequency of the acceptor, then

the polarization of the acceptor is in-phase with the driving field and the force is

attractive. If the driving frequency of the donor is greater than the resonant frequency

of the acceptor, then the acceptor is never able to “catch up” with the quickly varying

driving field and the interaction is repulsive. For homotransfer the FF is always

attractive because the Stokes shift guarantees that ωd < ωa.

Lineshapes are usually Lorentzian near the center, but have much shorter wings

(and finite second and higher moments). In many cases the wings are Gaussian. The

Voigt profile (convolution of a Gaussian and a Lorentzian) or the stochastic model of

Kubo (also known as the Brownian oscillator model) are commonly used models that

interpolate between the two profiles [137, 107], and may be used for more realistic

simulations of the FRET force.

4.2.7 Sample calculation

The FF can easily be calculated from experimental spectra via the relation

UFRET =
−
∫
fd(ω)α′

a(ω)ω−3 dω
∫
fd(ω)α′′

a(ω)ω−3 dω

~kFRET

2
. (4.41)

The imaginary polarizability, α′′
a(ω), can be extracted from an absorption spectrum

and Eq. 4.11 (there is no need to worry about multiplicative constants because they

cancel in the ratio). The Kramers-Kronig relation then gives α′
a(ω). If the Förster

radius,1 rF , and the lifetime of the donor are known, kFRET can easily be calculated

1The Förster radius is defined as the donor-acceptor separation at which the rate of FRET and
the rate of spontaneous emission by the donor are equal. Typical Förster radii are ∼ 5 nm.



84

550 600 650 700 750
λλ (nm)

Figure 4.3: Spectral properties of Chlorophyll b in diethylether used for calculating the
rate of homotransfer FRET (top) and the accompanying FRET force (bottom). Top:
( ) emission spectrum, fd(λ); (−◦−) absorption spectrum, α′′(λ). The overlap inte-
gral yields the rate of FRET. (α′′(λ) was padded with zeros for λ = (700nm−750nm)
to have absorption and emission spectra over comparable wavelengths.) Bottom:
( ) same emission spectrum, fd(λ), as above; (−4−) real polarizability, α′(λ). The
overlap integral yields the interaction energy. To calculate the real polarizability, the
Kramers-Kronig relations were applied to α′′ over the region λ = (220nm − 750nm).

from

kFRET =
1

τd

(rF

r

)6

. (4.42)

The ratio of integrals in Eq. 4.41 is typically of order 1, and is calculated for some

common FRET pairs in Table 4.1. Figure 4.3 shows the emission spectrum and

calculated values of α′(λ) and α′′(λ) for Chlorophyll b. Calculations were performed

by numerically integrating spectra available over the internet [1]. Integrations and

the Kramers-Kronig calculation were carried out over the spectral window for which

data was reported, with no extrapolation to high or low frequencies. When the ratio

of integrals (labelled in the table as 2UFRET/~kFRET ) is negative, then the FF is

attractive. At a separation equal to the Förster radius kFRET ∼ 1/τd, so UFRET ∼

~/τd, or the radiative linewidth of the donor. This miniscule shift in energy would be

very difficult to detect. However, for separations typical of chlorophyll molecules in
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Donor Acceptor 2UF RET

~kF RET

τd (ns) R0 (Å)

Ch aa Ch a -2.1
Ch bb Ch b -6.3
FITCc FITC -2.25 4.2 46
FITC TMRd 0.14 4.2 55
AF594e QSY21f -0.088 3.9 77
FITC AF532g 0.087 4.2 63

Table 4.1: Parameters for calculating the interaction free-energy of some com-
mon FRET pairs. The quantity 2UFRET/~kFRET is the the ratio of integrals from
Eq 4.41. aChlorophyll a in MeOH, bChlorophyll b in diethyl ether, cfluorescein isoth-
iocyanate, dtetramethylrhodamine, eAlexa Fluor 594, fNonfluorescent quencher, di-
arylrhodamine derivative, gAlexa Fluor 532.

the photosynthetic antenna complex, energy transfer occurs on a timescale of 100 fs

to 1 ps, so UFRET ∼ 0.1kBT .

4.3 Discussion

The ground state interaction energy given by the McLachlan formula (Eq. 3.11) is

insensitive to the details of the spectral densities because it is highly off resonant,

reminiscent of the off-resonant Stark shift. The interaction energy with one molecule

excited, in contrast, (Eq. 4.13) depends on the overlap of absorption and resonant

emission spectra at real frequencies, and thus is highly sensitive to the composition

of the interacting molecules.

In all our calculations of interaction free energies, the leading term is of the form

∆F = −1
2
V 2

e /δ, where δ is a measure of the detuning and Ve is a measure of the

electronic coupling. For ground state interactions of identical two-level systems, δ =

~ω0. For the interaction where one of the molecules is excited, the detuning is entirely

due to interactions with a bath and is of order δ ≈ kBT . Typically ~ω0 ∼ 50kBT ,
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so the excited state force far exceeds its ground state counterpart. However, if the

molecules have very different resonant frequencies, then the excited state force may

not be much stronger than the ground state force. These results are valid for times

long compared to the relaxation time, ∆ (typically picoseconds in water), but short

compared to the spontaneous lifetime (typically nanoseconds). Also, our formalism

holds only for Ve < kBT . For stronger couplings, excitonic effects are important and

the perturbation theory which is the basis of our approach is invalid.

Other studies of the van der Waals force with one molecule excited predict a

1/r3 interaction potential (i.e. first order in Ve) [177, 149, 150]. Why didn’t our

calculations reproduce this? To get such a first order excitonic effect requires coherent

interaction of the two molecules. The Förster theory of FRET applies only in the case

of very weak coupling ; that is, the intermolecular coupling must be much weaker than

the linewidth associated with coupling between each molecule and a thermal bath.

Coupling to a bath destroys coherence, and so the interaction potential only arises in

second order in Ve. Several pseudoisocyanine (PIC) dyes spontaneously form van der

Waals-bonded aggregates in solution in which the intermolecular coupling is stronger

than the coupling to the bath [189, 103, 152, 40]. These materials may demonstrate

strong first-order forces.

The basic phenomena associated with the FRET force (strong attraction or re-

pulsion, positive or negative dissipation) are the same as those that arise in the

interaction between materials at different temperatures (Chapter 3). This should not

be surprising, considering that a hotter particle is more likely to be in an excited

state than a colder particle. Thus the thermal forces can be thought of as the FRET

force, averaged over a thermal distribution of donor and acceptor populations.



87

How would one detect a force associated with FRET? Detection is simple if the

donor and acceptor have some freedom of relative movement. The donor-acceptor

separation and relative orientation both affect the dipolar coupling matrix element, Ve.

This matrix element in turn affects the optical properties of the dimer: it determines

the rate of FRET and the Davydov splitting. A time-dependence in either of these

quantities indicates movement in the excited state. Since we assume conditions under

which the Förster theory is valid, the Davydov splitting is much less than the linewidth

of donor or acceptor. However, a small shift in the maximum of the donor emission

spectrum may still be detectable.

Several studies have observed effects that can plausibly be interpreted in terms of

FRET forces, although this explanation was not put forward. Whitten and cowork-

ers [114, 119] studied the photophysical properties of a series of tethered bichro-

mophores, as a function of the tether length and solvent viscosity. In these studies

the chromophores on opposite ends of the tether were identical, so we would expect

a strongly attractive interaction when one chromophore is excited. It was observed

that optical excitation caused the molecules to collapse from their extended state

to a folded state. This folding did not occur in rigid solutions or when the linker

between the chromophores was rigid. Zeena and Thomas [204] performed similar ex-

periments on a series of hemicyanine-based bichromophores, and also found optically

induced folding transitions. By tailoring the polarity of the solvent, they could shift

the equilibrium between the folded and unfolded conformations. When the two states

were equally populated, the molecules were particularly sensitive to excitation. As

discussed above, the Stokes shift guarantees that the FRET force between identical

molecules is strongly attractive.
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Consider a tethered bichromophore in which the two chromophores have slightly

different resonant frequencies. The results of this section predict that if the lower

frequency chromophore is excited, then the intermolecular force will be strongly at-

tractive. If the higher frequency chromophore is excited, then the force will be strongly

repulsive. Such a molecule would constitute a molecular actuator, which can be driven

to either open or close depending on the color of the incident radiation.

For fluorophores freely diffusing in solution, the fluorescence quantum yield typi-

cally drops when the concentration surpasses a certain critical value, a phenomenon

known as concentration-quenching. In the 1970s Beddard and Porter [12] proposed

a model for concentration quenching in which excitations hop between fluorophores

via FRET. At high concentrations, an excitation typically visits many fluorophores

before decaying via spontaneous emission. To obtain concentration quenching, Bed-

dard and Porter postulated that an excitation “dies” if it reaches a statistical pair

of molecules spaced by less than a minimum radius of ∼ 1 nm. This model is in

quantitative agreement with quenching data for solutions of chlorophyll a, but does

not address the ultimate question of what happens to the excitation in the statistical

pair. 1 nm is too big a gap for electron-transfer interactions, and the mechanism of

concentration quenching has remained unresolved to this day [102].

The theory of excited-state forces suggests a mechanism for concentration quench-

ing. The attractive force when one molecule is excited far exceeds its ground state

counterpart. For spacings of ∼ 1 nm, the force may be strong enough to temporarily

bind the two fluorophores together, just as it caused the tethered bichromophores to

fold. For planar molecules such as chlorophyll a, the most likely geometry is for the

molecules to stick face-to-face to form an H-dimer. In this conformation the lowest
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excitonic state has zero transition dipole to the ground state. The excitation can

only decay via a nonradiative process, whereafter the two molecules dissociate. This

mechanism suggests that chemical modifications that sterically hinder face-to-face ag-

gregation should inhibit concentration quenching. Such modifications may be useful

in the design of dye lasers.

The ability to generate resonant van der Waals forces may be of practical use.

For example, in a single-component gas, it is possible to excite selectively a subset of

molecules characterized by a particular Doppler shift. These molecules are all moving

in roughly the same direction. The excited molecules experience increased friction

in their collisions with ground-state molecules, compared to collisions between two

ground-state molecules. Thus the momentum of the excited molecules will gradually

be transferred to the remaining molecules in the gas, and the gas will develop a net

drift in the direction set by the detuning of the laser. This drift is in addition to the

drift imposed by the direct action of the laser on the gas molecules, which is the basis

of many optical trapping and cooling techniques.

As a second example we consider interactions within a cell. The mechanisms

of biological specificity are currently not fully understood. The inside of a cell is

roughly 25% proteins by weight, with many components present in minute amounts.

How do enzymes and their substrates ever find each other? Charge-charge attraction,

ground-state van der Waals forces, and the hydrophobic effect are all known to play

some part [88], but none of these interactions is specific. Shape complementarity and

charge-transfer interactions act only over a very short range. Might conversion of

ATP leave molecules in a vibrationally exited state, whereupon the van der Waals

forces are long-range and specific to molecules that have matching spectra?



Chapter 5

Optical Control of Intermolecular
Forces

In the previous chapter we studied forces with one molecule excited, but we did

not address how the molecule got to its excited state. In this chapter we study

intermolecular forces in an arbitrary time-dependent optical field. In the dark we

reproduce the ground state van der Waals force; any linear or nonlinear optical process

leads to a new force which may be attractive or repulsive and which may show complex

time-dependence. For instance, a photon-echo signal from closely spaced molecules

is associated with a “force-echo” in the dipole-dipole interaction.

5.1 Introduction

Until this point, the only perturbation we have studied is a bilinear intermolecular

coupling. We applied fictitious fields to the individual molecules to calculate the

generalized response functions, but these fields were always set to zero when we

calculated the force. Even when we calculated the force for one molecule excited, we

assumed that whatever field originally excited the molecule had returned to zero by

90
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the time we measured the force.

In this chapter we study molecules subject to a bilinear intermolecular coupling

and to a time-dependent electric field. Two questions naturally arise: How does the

intermolecular coupling affect the optical response? and how does the optical field

affect the intermolecular force?

The first question has been addressed (albeit approximately) in the nonlinear op-

tics literature. Many interesting and important optical effects arise from interactions

of closely spaced molecules. Examples are density-dependent index of refraction, su-

perradiance, pressure-induced resonances and the formation of delocalized Frenkel

excitons. These effects all arise because molecules in close proximity experience not

only the applied field, but also a perturbation due to the polarization of their neigh-

bors.

The problems of calculating the optical response and calculating the intermolec-

ular force are closely related. For molecules a and b and a polarization operator µ,

the optical polarization is given by p(t) = 〈µa(t)〉 + 〈µb(t)〉; the intermolecular force

is related to 〈µa(t)µb(t)〉. It is tempting to assume that if we can calculate 〈µa〉 and

〈µb〉, then we can calculate 〈µaµb〉. Unfortunately, this is not the case because in

general 〈µaµb〉 6= 〈µa〉 〈µb〉. In particular, if both molecules are in the ground state

and subject to a bilinear coupling, then 〈µa〉 〈µb〉 = 0 but 〈µaµb〉 > 0. Calculating

the intermolecular force is a subtler problem than calculating the optical response

because the force depends on correlations of operators. There is no ready-made tech-

nique in the optical arsenal which would seamlessly interpolate between the van der

Waals force in the dark and light–modified intermolecular forces.

The principle approach used in the literature to calculate intermolecular forces
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in an optical field is the local field approximation (LFA) [133, 147, 132]. The linear

LFA has been applied successfully by Jones to a theory of electromechanics of small

particles (1 µm - 1 mm) [90] in low frequency fields (kHz - GHz), and by Chaumet and

Nieto-Vesperinas to interactions between colloidal particles in intense laser fields [34].

Here we extend the theory to include Brownian motion and nonlinear optical effects.

The LFA correctly yields the first-order forces in the light, but misses the ground-

state van der Waals energy. We discuss several ad hoc procedures that have been

developed to extract the van der Waals energy from the local field approximation

and show that these procedures are incorrect. The Liouville space superoperator

formalism developed in Chapters 1 and 2 allows us to calculate the force with and

without the optical field in a manner that is quantum mechanically rigorous.

5.2 Local field approximation

In the local field approximation (LFA) we solve self-consistently for the electric field

at each molecule and the resulting polarization. In order to do this, we must treat the

molecular polarization as a classical quantity: it has a definite value at all times, and

goes to a constant (usually zero) in the absence of an optical field. This approximation

is equivalent to factoring the many-body density matrix into a direct-product of single-

molecule density matrices. Within the LFA, each molecule is completely characterized

by its set of response functions.

Consider a monochromatic plane-wave travelling through a vacuum. The electric

field is

E(r, t) = E0e
−i(ωt−k·r) + c.c. (5.1)
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r  

E0 

θ 

Figure 5.1: Two particles are immersed in a medium and subject to an optical field.
We assume that k · r � 1 so that the spatial variation of the applied field may be
neglected.

Now introduce molecules a and b. Each molecule has a set of hyperpolarizabilities,

αj(ω), βj(−ω;ω1, ω2), γj(−ω;ω1, ω2, ω3), where the argument −ω of the hyperpolar-

izabilities is a reminder of the constraint ω1 + . . . + ωn = ω. The nth order hyper-

polarizability is a tensor of rank n + 1 that connects n input vectors to one output

vector. The polarization of molecule j is

p̃j(ω) = αj(ω)Ẽj(ω) +

∫

dω2

∫

dω1βj(−ω;ω2, ω1)Ẽj(ω2)Ẽj(ω1) + . . . , (5.2)

where Ẽj is a Fourier component of the local field at molecule j.

Figure 5.1 illustrates the geometry. The vector r joins the particles and forms an

angle θ with the applied field. We assume s � r � λ, where s is the maximum di-

mension of either particle and λ is the wavelength of the incident light-wave. The first

condition allows us to focus on dipole-dipole interactions to the exclusion of higher

multipole interactions. The second condition allows us to ignore spatial variation in

E and also to ignore the effect of retardation in electromagnetic interactions between

our two molecules.
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5.2.1 Linear regime

For maximum generality we let the polarizability of each molecule, αj , be a frequency

dependent complex tensor. The polarization of each molecule is

p̃a = αaẼa (5.3a)

p̃b = αbẼb, (5.3b)

where we have omitted the frequency arguments and assumed that neither molecule

has any permanent moments.

The local field is the sum of the incident field and the field due to the polarization

of the neighboring molecule:

Ẽa = Ẽ0 + Jp̃b (5.4a)

Ẽb = Ẽ0 + J p̃a, (5.4b)

where J is the propagator that converts a polarization of one particle into an electric

field at its neighbor, given by Eq. 3.4.

It is a matter of simple algebra to solve equations 5.3 and 5.4 for the four un-

knowns, Ẽa, Ẽb, p̃a, and p̃b. Doing so yields:

Ẽa = (1 − JαbJαa)
−1 (1 + Jαb) Ẽ0, (5.5)

p̃a = (1 − αaJαbJ)−1 (αa + αaJαb) Ẽ0. (5.6)

Similar equations hold for Ẽb and p̃b with the subscripts a and b interchanged.

The interaction free energy is given by an adiabatic switching of the coupling, J

(compare with Eq. 3.21):

U = −
∫

p̃∗
ap̃bdJ , (5.7)
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and the interaction force is F = −∇U . The imaginary part of the polarizability

is typically negligible when the applied field is off-resonant, (α′′(ω) decays faster

than ω−2 away from a resonance while α′(ω) decays as ω−1). Assuming that the

polarizability is fully real, the free-energy of interaction, U is:

U = −1

2
(1 − αaJαbJ)−1(αa + αb + 2αaJαb)|Ẽ0|2 (5.8)

For arbitrary anisotropic particles of fixed position and orientation, the distance-

dependent part of Eq. 5.8 yields the free-energy of interaction. The force is a linear

function of the intensity of the incident radiation.

We can gain physical insight into Eqs. 5.5, 5.6,and 5.8 by expanding them in

powers of the coupling, αaJαbJ . In the regime |αaJαbJ | < 1 Eq. 5.6 becomes:

p̃a =
∞∑

n=0

(αaJαbJ)n(αaẼ0 + αaJαbẼ0) (5.9)

or

p̃a = αaẼ0 + αaJαbẼ0 + αaJαbJαaẼ0 + αaJαbJαaJαbẼ0 + . . . (5.10)

This series expansion has a simple physical interpretation. The first term is the

response of particle a to the incident field alone. The second term is a’s response

to the dipole field from b’s response to the incident field. The third term is a’s

response to b’s response to a’s response to the incident field, etc. An electric field

propagates back and forth between the molecules, creating ever smaller corrections

to the polarization.

The electric field at particle a is similarly expanded as:

Ẽa = Ẽ0 + JαbẼ0 + JαbJαaẼ0 + JαbJαaJαbẼ0 + . . . , (5.11)



96

and the interaction free energy is:

U = −1

2
Ẽ∗

0(αa + αb)Ẽ0 − Ẽ∗
0αaJαbẼ0 −

1

2
Ẽ∗

0(αaJαbJαa + αbJαaJαb)Ẽ0 − . . .

(5.12)

The first term in equation 5.12 represents the free-energy of the individual molecules in

a field. Its gradients and orientation-dependence are responsible for optical trapping

and the optical Kerr effect, respectively. The second term, with a single factor of J ,

represents direct dipole-dipole interaction. The third term represents dipole-induced

dipole interactions: the field polarizes one particle; the dipole of this particle induces

a dipole in its neighbor; these two dipoles interact.

It should be noted that Eq. 5.12 differs from the (incorrect) expression for the free

energy given by Power and Thirunamachandran [148] and in Milonni’s textbook on

quantum electrodynamics [132]. These authors take the well-known formula for the

free energy of a single molecule in a field, U = −1
2
Ẽ∗αẼ, and reason that the free

energy for two molecules should have the form:

Uinc = −1

2
(Ẽ∗

aαaẼa + Ẽ∗
bαbẼb). (5.13)

Expanding Uinc in powers of J yields

Uinc = −1

2
Ẽ∗

0(αa + αb)Ẽ0 − 2Ẽ∗
0αaJαbẼ0

−3

2
Ẽ∗

0(αaJαbJαa + αbJαaJαb)Ẽ0 − . . . (5.14)

Comparing Eq. 5.14 with Eq. 5.12 we see that Eq. 5.13 counts each nth order interac-

tion n + 1 times, while in Eq. 5.12 we only count each interaction once. It is easy to

check by explicit differentiation that Eq. 5.12 yields the correct intermolecular force,

and Eq. 5.14 does not.
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The expression for the interaction free-energy simplifies if we consider isotropic

particles (replacing each dielectric tensor by a frequency-dependent complex number).

Then we can factor out the polarizabilities and write the series expansion for U

(Eq. 5.12) as:

U = −|Ẽ0|2
2

(αa + αb) −
|Ẽ0|2αaαb

8πε0r3
(1 + 3 cos 2θ)

−|Ẽ0|2(α2
aαb + α2

bαa)

64π2ε20r
6

(5 + 3 cos 2θ) − |Ẽ0|2α2
aα

2
b

128π3ε30r
9
(7 + 9 cos 2θ) − . . . .(5.15)

where we used equation 3.4 for the dipole field propagator.

The electric field induces parallel dipole-moments in the two particles, provided

that αa and αb have the same sign. Thus if r̂ is parallel to Ê0, then the dipoles are

aligned head-to-tail, and the particles experience long-range 1/r3 attraction. If r̂ is

perpendicular to Ê0, then the dipoles are aligned head-to-head and tail-to-tail, and

the particles experience long-range 1/r3 repulsion. The sign of the long-range force

switches at 1 + 3 cos 2θ = 0, or θ = 54.7 deg.

The force is reversed if αa and αb have opposite sign: the dipole moment of the

particle with negative α′ is antiparallel to the applied field. Since the sign of the

real polarizability may differ at different frequencies, for dissimilar particles it is

possible to change the sign of the long-range force merely by changing the color of the

illumination.

In the discussion above we held Ê0 and r̂ fixed. In many physical situations, one

or both of these will fluctuate randomly. If the illumination is isotropic, then we let

Ê0 lie anywhere on the unit sphere. If the interparticle axis can tumble freely (the

particles are in a fluid and U � kBT ), then we let r̂ lie anywhere on the unit sphere.
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In either case we need to average U over all values of θ:

U =

∫ π

0
U(θ) sinθ dθ
∫ π

0
sinθ dθ

. (5.16)

Since cos 2θ = −1/3, the 1/r3 term in 5.15 averages to zero. The long-range

behavior of the rotational average is dominated by the 1/r6 term:

U = − |Ẽ0|2
16π2ε20r

6
(α2

aαb + α2
bαa) + O(

|Ẽ0|2
ε30r

9
). (5.17)

In 5.17 the distance-independent component of the free-energy has been omitted.

Under isotropic conditions, light-induced forces have the same distance dependence

as van der Waals forces.

When the illumination is unidirectional and polarized and the average in Eq. 5.17

is due to freedom of orientation of the molecules, then a Boltzmann factor favors those

orientations with lower energy. Eq. 5.17 may be thought of as the infinite temperature

approximation, in which all orientations of the intermolecular axis are equally likely.

The partition function for two molecules of fixed intermolecular separation r but with

orientational freedom is

Z(r) =

∫ π

0

e−U/kBT sin θdθ. (5.18)

Assuming U/kBT � 1, we may expand the exponential in Eq. 5.18 as e−U/kBT =

1 − U
kBT

+ 1
2

(
U

kBT

)2

+ . . .. The free energy, F = −kBT lnZ then becomes

F = U − U2/2kBT + . . . (5.19)

The first term in 5.19 corresponds to the infinite-temperature limit in which all ori-

entations occur with equal probability and is given by Eq. 5.17. The second term

introduces the fact that at finite temperature lower-energy orientations occur more

frequently than higher-energy orientations.
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As in the calculation of U , we get terms proportional to 1/r6 from evaluating

U2/2kBT . The distance-dependent part is:

U2/2kBT =
|Ẽ0|4

40kBTπ2ε20r
6
α2

aα
2
b +

|Ẽ0|4
160kBTπ3ε30r

9
(α2

aαb + α2
bαa) + . . . . (5.20)

The derivation of Eq. 5.20 is analogous to the classical derivation of the Keesom

interaction between molecules with permanent dipole moments. The chief difference

here is that the dipole moments are induced by the applied field, rather than being

intrinsic to the molecules. The temperature-dependent free-energy should be treated

with some caution because it is proportional to E4
0 , or the intensity squared. Some

nonlinear optical effects contribute in the same order in the field and it is necessary to

determine whether nonlinear effects significantly alter the free-energy of interaction.

5.2.2 Nonlinear regime

Now we turn to the case where the field is strong enough to induce nonlinear responses

in the molecules. The local field equations must be solved iteratively in powers of

the field and the intermolecular coupling, with the power of each determined by the

strength of that perturbation.

The polarization of each particle depends on the applied field and the polarization

of its neighbor:

p̃a(ω) = αa(ω)[Ẽ0(ω) + J p̃b(ω)] (5.21a)

+

∫

dω2

∫

dω1βa(−ω;ω2, ω1)[Ẽ0(ω2) + J p̃b(ω2)][Ẽ0(ω1) + J p̃b(ω1)] + . . .

p̃b(ω) = αb(ω)[Ẽ0(ω) + J p̃a(ω)] (5.21b)

+

∫

dω2

∫

dω1βb(−ω;ω2, ω1)[Ẽ0(ω2) + J p̃a(ω2)][Ẽ0(ω1) + J p̃a(ω1)] + . . .
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Eqs. 5.21 may be solved iteratively by substituting Eq. 5.21b into the r.h.s. of Eq. 5.21a

and Eq. 5.21a into the r.h.s. of Eq. 5.21b.

Here we consider only the interaction energy that is first-order in the intermolecu-

lar coupling, and arbitrary order in the field. We may then ignore the intermolecular

coupling in calculating the time-evolution of each dipole moment, so the first-order

interaction free energy is

U(t) = −pa(t)Jpb(t), (5.22)

where the time-evolution of the dipole fields of the individual molecules may be calcu-

lated using response functions to arbitrary order, using the optical Bloch equations,

or using any other method of calculating the single-molecule optical response.

As a nontrivial example of a force accompanying a nonlinear optical process, we

consider the “force-echo” that accompanies a photon-echo experiment. Let a and b

represent nominally identical two level systems subject to inhomogeneous broadening.

Each molecule has a slightly different resonant frequency due to variations in its mi-

croenvironment. This model is a reasonably good description of molecules embedded

in molecular crystals, glasses, and viscous liquids.

The system is characterized by two times: the transverse relaxation time T2,

related to the rate of inhomogeneous dephasing (also known as decoherence), and the

longitudinal relaxation time T1, related to the rate of spontaneous emission. Typically

T2 � T1, so the inhomogeneous dephasing sets the linewidth. If the system is excited

by an optical pulse, the emitted signal decays at a rate T2 as the individual oscillators

acquire different phases. However, if a second pulse is introduced after an interval

τ � T1, it is possible to reverse the time-evolution of each oscillator, so that after a

further interval τ all the oscillators are back in phase. The photon-echo describes the
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burst of light that appears, as if from nowhere, 2τ after the original pulse.

Eq. 5.22 indicates that the recoherence that occurs in the photon echo experiment

should be accompanied by an appearance of a first-order intermolecular force at the

echo time, as pa(t) and pb(t) return to in-phase oscillation. This photon-echo force

may be detectable as an acoustical pulse that accompanies the photon echo.

5.2.3 van der Waals forces within the LFA

The LFA predicts that when the applied field goes to zero, both molecules are quies-

cent and there is no intermolecular force. There have been several attempts to graft

quantum mechanics onto the LFA in order to extract the ground state van der Waals

force. The principle idea is to introduce zero-point fluctuations of the molecules and

the radiation field as additional semiclassical sources in the local field equations.

Casimir and Polder first calculated the retarded van der Waals force using fourth

order quantum electrodynamic perturbation theory [30] and found the potential to

be:

U = −23~c

4πr7
αa(0)αb(0). (5.23)

The next year Casimir published a paper in French [29], showing that the retarded

van der Waals force can be calculated from the second term of Eq. 5.12 if the field

Ẽ0 is regarded as an operator and the fully retarded expression is used for the field

propagator, J 1

Jij = [∇i∇j − δij∇2]
exp(ikr)

r
. (5.24)

1The first term in Eq. 5.12, which does not depend on the intermolecular separation, gives the
nonrelativistic contribution to the Lamb shift when the field is treated quantum mechanically [133].
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Casimir’s approach was to sum the light-induced force over all wavevectors and polar-

izations of the zero-point field. The details of the calculation are clearly summarized

in Refs. [132, 18, 147]. The result is that the retarded interaction potential is

U = − ~

πc6

∫ ∞

0

dωω6αa(ω)αb(ω)G
(ωr

c

)

, (5.25)

where

G(x) ≡ sin 2x

x2
+

2 cos 2x

x3
− 5 sin 2x

x4
− 6 cos 2x

x5
+

3 sin 2x

x6
. (5.26)

For ω0r/c� 1, where ω0 is a characteristic resonant frequency of a and b, the polariz-

abilities may be taken outside of the integral. Evaluating the integral
∫
ω6G(ωr/c)dω

yields the Casimir formula, Eq. 5.23.

It is natural to consider the nonretarded limit of Eq. 5.25 as well, in the hopes of

obtaining the r−6 potential. Milonni does this in his textbook on quantum electro-

dynamics [132], and similar attempts are widespread in the literature [133, 147, 134].

The procedure is to claim that for small r, the last term of Eq. 5.26 dominates:

lim
x→0

G(x)
claim
=⇒ 3 sin 2x

x6
, (5.27)

which does lead to the correct van der Waals energy. However, claim 5.27 is false.

For small x, the r.h.s. of 5.27 is ∝ 1/x5, while the r.h.s. of 5.26 is ∝ 1/x. The

denominators in 5.26 are not indicative of the small x limit because, for instance,

the terms 6 cos 2x
x5 and 3 sin 2x

x6 have the same small x limit. When limit is properly

evaluated, the Casimir formula (Eq. 5.25) gives zero nonretarded force. This must be

the case, because the rotational average of the second term of Eq. 5.12 is zero when

the nonretarded propagator is used (Eq. 5.17).

So where does the nonretarded van der Waals force come from? Langbein rewrote



103

Eq. 5.12 as [109]

U = −1

2
Ẽ∗

0(αa + αb)Ẽ0 − Ẽ∗
0αaJαbẼ0 −

1

2
p̃∗

aJαbJ p̃a −
1

2
p̃∗

bJαaJ p̃b − . . . (5.28)

The first term does not depend on the intermolecular spacing, so we neglect it. As

we have shown, in the nonretarded limit, the orientational average of the second

term is zero. Thus the third and fourth terms of Eq. 5.28 must give the nonretarded

interaction.

The fluctuation-dissipation theorem relates the second moment of the dipole fluc-

tuations of each molecule to the imaginary part of its susceptibility:

〈
p̃∗

j (ω)p̃j(ω)
〉

=
~

2π
coth

(
~ω

2kBT

)

α′′
j (ω). (5.29)

Substituting Eq. 5.29 into Eq. 5.28 and integrating over all frequencies gives

U = − ~

4π

∫ ∞

−∞
dω coth

(
~ω

2kBT

)

[α′′
a(ω)αb(ω) + α′′

b (ω)αa(ω)]. (5.30)

Only the real (even) parts of αa(ω) and αb(ω) survive the integral. Writing [α′′
a(ω)α′

b(ω)+

α′′
b (ω)α′

a(ω) as Im[αaαb] and performing a contour integration as in Chapter 3 yields

the McLachlan formula for the van der Waals energy. We see again that the short-

range van der Waals force depends on the fluctuation properties of the molecules,

while the long-range Casimir force depends on the fluctuation properties of the vac-

uum. To obtain the full nonretarded and retarded van der Waals-Casimir energy it

is necessary to keep all the terms in Eq. 5.28.

Contributions to the van der Waals energy higher order in the coupling depend on

higher moments of the dipole fluctuations of each molecule. If the reference Hamil-

tonians of the molecules are harmonic, then the dipole fluctuations have a Gaussian

distribution and all moments can be determined by the fluctuation dissipation theo-

rem. However if the molecules have nonlinearities, as all molecules do, then the higher
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moments of the dipole fluctuations are needed as well. There is currently no known

analogue of the fluctuation dissipation theorem for the higher moments of the dipole

fluctuations, so the Langbein theory cannot be extended beyond second order.

The shortcomings of the local field approximation in calculating optical effects

have been addressed by the nonlinear exciton equations (NEE) [137], which keep

track of collective variables related to intermolecular correlations. It can be shown

that the local field approximation is exact in the linear response to an applied field,

but that it misses certain resonances in the nonlinear response. It is tempting to

apply the NEE to calculation of the intermolecular force as well. However, the NEE

are based on the Heitler-London approximation for the intermolecular interaction,

which neglects off-resonant interactions and thus completely misses the ground state

van der Waals force. Thus neither the LFA, nor the more rigorous NEE is a good

starting point for calculating light-modified intermolecular forces.

In the next section we introduce a procedure for calculating light-modified inter-

molecular forces that is quantum mechanically rigorous, is valid for arbitrary time-

dependent light fields, is applicable to complex systems interacting with a bath, and

yields the ground state van der Waals force in a seamless manner. The procedure

uses the Liouville space superoperator formalism developed in Chapters 1 and 2.

5.3 Superoperator approach

Suppose we have a plane wave incident on a pair of molecules whose separation is

much less than the wavelength. Then Ea(t) = Eb(t) ≡ E(t). For simplicity we

adopt the point-dipole approximation and neglect the vectorial nature of the fields
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and polarizations. The perturbation then has three terms:

Hab = −E(t)µa − E(t)µb − J(t)µaµb, (5.31)

with J given by Eq. 3.4. We wish to calculate 〈B(t)〉, where B ≡ µaµb. Recall Eq. 2.2:

〈B(t)〉 =

〈

T B̂+(t) exp

(

− i

~

∫ t

−∞
Ĥab−(t′)dt′

)〉

0

. (5.32)

We cannot say a priori whether the perturbation due to E or J is stronger–there are

experiments corresponding to both scenarios. We wish to expand Eq. 5.32 to nth order

in J and mth order in E, to calculate
〈
B(n,m)(t)

〉
. This is accomplished by factoring

the exponential in Eq. 5.32. It is not normally possible to factor an exponentiated

sum of operators: for operators A and B, eA+B 6= eAeB. However the time-ordering

operator on the left allows us to do this: T eA+B = T eAeB. The time-evolution of

〈B(t)〉 becomes:

〈B(t)〉 =

〈

T µ̂a+(t)µ̂b+(t) exp

[
i

~

∫ t

−∞
dt′E(t′)µ̂a−(t′)

]

exp

[
i

~

∫ t

−∞
dt′E(t′)µ̂b−(t′)

]

exp

[
i

~

∫ t

−∞
dt′J(t′)[µ̂a−(t′)µ̂b+(t′) + µ̂a+(t′)µ̂b−(t′)]

]〉

0

. (5.33)

The three exponentials in Eq. 5.33 represent the field interacting with molecule a,

the field interacting with molecule b, and the interaction of molecules a and b, re-

spectively. The term involving the intermolecular coupling was expanded using the

identity [µ̂aµ̂b]− = µ̂a−µ̂b+ + µ̂a+µ̂b− (see Eq. 2.9). Each exponential in Eq. 5.33 may

be expanded to any desired order, or, if possible, treated exactly. Once expanded,

Eq. 5.33 becomes a sum of products of single-molecule superoperators. Because the

initial state is a direct-product, we may factor the resulting expression in terms of

single-molecule multitime correlation functions.
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We now evaluate 〈B(t)〉 to successive orders in J(t) and E(t). To zeroth order in

J(t) we can factor Eq. 5.33 to

〈
B(0)(t)

〉
=

〈

T µ̂a+(t) exp

[
i

~

∫ t

−∞
dt′E(t′)µ̂a−(t′)

]〉

a0
〈

T µ̂b+(t) exp

[
i

~

∫ t

−∞
dt′E(t′)µ̂b−(t′)

]〉

b0

. (5.34)

Each term in the brackets in Eq. 5.34 is simply the time-evolution of the dipole

moment of an individual molecule interacting with the field. So the interaction energy

to first order in J and to all orders in E is

U (1)(t) = −〈µa(t)〉 J(t) 〈µb(t)〉 . (5.35)

This is the same as the result obtained using the local field approximation (Eq. 5.22),

and leads to e.g. the force-echo that accompanies a photon-echo.

Expanding the intermolecular interaction term in Eq. 5.33 to first order in J(t),

we obtain

〈
B(1)(t)

〉
=

i

~

∫ t

−∞

∑

ν

〈

T µ̂a+(t)µ̂aν(t1) exp

[
i

~

∫ t

−∞
dt′E(t′)µ̂a−(t′)

]〉

a0
〈

T µ̂b+(t)µ̂bν(t1) exp

[
i

~

∫ t

−∞
dt′E(t′)µ̂b−(t′)

]〉

b0

J(t1)dt1, (5.36)

where ν = +,−. Now we may expand Eq. 5.36 to arbitrary order in the field. To

zeroth order in the field it becomes:

〈
B(1,0)(t)

〉
=

i

~

∫ t

−∞
〈T µ̂a+(t)µ̂a−(t1)〉a0 〈T µ̂b+(t)µ̂b+(t1)〉b0 J(t1)dt1

+
i

~

∫ t

−∞
〈T µ̂a+(t)µ̂a+(t1)〉a0 〈T µ̂b+(t)µ̂b−(t1)〉b0 J(t1)dt1

=

∫ t

−∞

[
R+−

a (t, t1)R
++
b (t, t1) +R++

a (t, t1)R
+−
b (t, t1)

]
J(t1)dt1(5.37)
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which was the starting point for our discussion of van der Waals forces in Chapter 3.

Thus the superoperator approach naturally yields the ground state van der Waals

force in the dark.

To first order in J and first order in E, the intermolecular correlation is:

〈
B(1,1)(t)

〉
=

∫ t

−∞
dt2

∫ t

−∞
dt1[2R

+−−
a (t, t2, t1)R

++
b (t, t2) +R+−

a (t, t2)R
++−
b (t, t2, t1)

+R++−
a (t, t2, t1)R

+−
b (t, t2) + 2R++

a (t, t2)R
+−−
b (t, t2, t1)]J(t2)E(t1),

(5.38)

where we have inserted the single-molecule GRFs for the corresponding single-molecule

multitime correlation functions (the GRFs are defined in Eqs. 1.34 and 1.35). This

expression describes modification of the second-order van der Waals force by light.

It is straightforward to continue the expansion of Eq. 5.33 to any desired order in

J and E. For instance, the expansion to nth order in J is

〈
B(n)(t)

〉
=

1

n!

(
i

~

)n∑

{να}

∫ t

−∞
dtn · · ·

∫ t

−∞
dt1

〈

T µ̂a+(t)µ̂aνn
(tn) . . . µ̂aν1

(t1) exp

[
i

~

∫ t

−∞
dt′E(t′)µ̂a−(t′)

]〉

a0
〈

T µ̂b+(t)µ̂bνn
(tn) . . . µ̂bν1

(t1) exp

[
i

~

∫ t

−∞
dt′E(t′)µ̂b−(t′)

]〉

b0

J(tn) . . . J(t1), (5.39)

where να = +,− and the sum is over all n-element sequences (νn, . . . , ν1). Each

term in the expansion may be expressed in terms of single-molecule GRFs. For

constant J (i.e. fixed intermolecular separation), the interaction free energy is given

by U = −
∫
〈B〉 dJ , as in Eq. 3.21. In the presence of time-varying fields, neither

molecule is in thermal equilibrium, so U does not correspond to a free energy in the
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classical equilibrium sense. However, U is a potential function, whose gradient gives

the intermolecular force.

5.4 Application to the van der Waals gas

In this section we calculate the effect of illumination on the density of a system obeying

the van der Waals equation of state. Illumination may change the density through

its effect on intermolecular forces. The index of refraction depends on the density,

so materials obeying this equation of state should show an intensity-dependent index

of refraction. Near the critical point there is a divergence in the sensitivity of the

density and index of refraction to changes in the illumination. The van der Waals

equation of state is a good model of many gases, solutions and polymer mixtures.

We model the material as hard spheres interacting via the pair-potential:

U(r) =

{

∞ r < r0

U0

(
r0

r

)6
r > r0

(5.40)

where r0 is the molecular radius. Normally the attractive component, U0, is given by

the ground-state van der Waals interaction. Here we add to the dispersion energy the

light-induced interaction, so U0 = Uvdw + Ulight, where Ulight is taken from the first

term of 5.17

Ulight = − Iα3

4π2cε30r
6
, (5.41)

where we assume molecules a and b are the same species and the make the substitution

|E0|2 = 2I/ε0c, where I is the intensity.

The van der Waals equation of state,

(

p+
a

v2

)

(v − b) = RT (5.42)
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relates the pressure, p, molar volume, v and temperature, T , in a gas of interacting

particles to the interaction-potential 5.40 via the constants a and b:

a =
2π

3
N2

Ar
3
0U0 (5.43a)

b =
2π

3
NAr

3
0, (5.43b)

where NA is Avogadro’s number.

Since the constant a is proportional to Uvdw + Ulight, we can write a = a0 + a1I.

Substituting this expression back into the van der Waals equation of state, we evaluate

the change in molar volume upon a change in intensity:

∂v

∂I

∣
∣
∣
∣
p,T

=
a1v(b− v)2

2a(b− v)2 − RTv3
. (5.44)

Next we find the change in the index of refraction that results from this change in

molar volume. The Lorentz-Lorenz equation relates the molecular polarizability, the

index of refraction, and the molar volume of a material:

α =
3ε0v

NA

(
n2 − 1

n2 + 2

)

, (5.45)

whence the change in index of refraction upon a change in molar volume is:

∂n

∂v
= −(n2 − 1)(n2 + 2)

6nv
. (5.46)

Combining results 5.46 and 5.44 we write:

∂n

∂I

∣
∣
∣
∣
I=0

=
∂n

∂v

∂v

∂I

= −a1
(n2 − 1)(n2 + 2)

6n

(b− v)2

(2a0(b− v)2 −RTv3)
. (5.47)

The critical point (∂p
∂v
|T = ∂2p

∂v2 |T = 0) occurs at Tc = 8a0/(27bR) and vc = 3b.

The denominator of 5.47 diverges at this point. Thus systems near a critical point
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should show exceptionally large nonlinear optical response. Examples of such systems

are single-component liquid-gas equilibria, polymers near the θ point, and binary

solutions near the consolute critical point.

5.5 Discussion

The connection between optics and ground-state intermolecular forces dates to the

beginning of the 20th century when it was noted that gases with a higher index of

refraction tend to have a larger deviation from the ideal gas law [124]. The McLachlan

formalism explains this connection by expressing the dispersion force (which affects

the second virial coefficient) in terms of the molecular polarizability (which deter-

mines the index of refraction). In this section we have extended the formalism to

relate optical effects to changes in intermolecular forces. For molecules with fixed ori-

entation, a polarized light beam may generate 1/r3 forces, while for molecules with

random orientations, light modifies the 1/r6 van der Waals potential.

In recent years there have been many observations and predictions of effects that

are most plausibly interpreted in terms of light-modified intermolecular forces. Burns

first observed light-induced crystallization of micron-sized colloidal particles [21, 22].

Xu [202] and Calander [27] both studied the forces in nanometer-sized metal particles.

They showed that when the exciting light is tuned near an optical resonance (so that

α is very large), then the fields may be strong enough to trap small molecules at

room temperature. In all of the above studies, forces were calculated within the

local-field approximation, so the ground state van der Waals interaction was ignored.

This neglect of the ground state force is not justified, since excitonic splittings often

exceed light-induced Stark shifts.
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Polymers are good systems for investigating light-modified intermolecular forces

because solutions can be tuned to the cusp of a phase transition, at which point

they are exquisitely sensitive to small changes in intermolecular forces. Over the

past six years a range of experimental studies has focussed on light-induced phase

transitions in polymers [17, 83, 84, 85, 44, 45]. Recent experiments in this area have

highlighted the absence of a good theory to explain the phenomena [170, 91]. Garetz

and coworkers observed nonphotochemical light-induced nucleation of supersaturated

solutions of glycine in water [71], and were able to control the crystal structure with

the polarization of the light. To-date these light-induced phase transitions have been

rationalized solely in terms of the first term of Eq. 5.12, i.e. density changes and

molecular alignment induced by the light. One of the results of this section is that

the light also modifies the forces between the molecules, and this too may play an

important role in light-induced phase transitions. As one application of this, I sug-

gest investigating the use of intense polarized light to facilitate the crystallization of

proteins–a notoriously difficult problem of current biomedical interest.

The ability to use light to control interactions of biomolecules within a cell has

tremendous potential. Just recently Ehrlicher and coworkers used a laser to direct

the polymerization of actin within the growth-cone of a neuron, thereby steering the

neuron towards their target [57]. Bruckner showed that light may also induce shape

changes in vesicular membranes that have been doped with a fluorophore [151]. A

fuller understanding of light-modified intermolecular forces may allow optical inter-

vention in biochemical pathways.



Chapter 6

Biological Solitons

In this last chapter I study four examples of sine-Gordon solitons in filamentous

biological and nanoscale materials. Soliton-like quasiparticles are widely applied in

physics, but are more of a rarity in biological modelling. The systems studied are:

an organelle in the sperm of the horseshoe crab, a multiwalled nanotube, a polymer

in an AC electric field, and a polymer confined to a thin sheet.

6.1 Introduction

Small filamentous structures are common in biology, chemistry and condensed matter

physics. The rich morphology that these structures exhibit arises from a combination

of short and long range forces, often mediated by hydrodynamics, electrostatics and

thermal fluctuations. While the chemistry of these materials may be complex, their

physical properties can often be described by a few coarse-grained parameters. In or-

ganic and inorganic nanotubes as well as in semiflexible biopolymers, the mechanical

properties depend mostly on bending and twisting moduli, while the complex inter-

actions between filaments can be replaced by a simple short-range adhesive potential.

112
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A simple polarizability per unit length provides a good description of the electrical

response.

As we will see below, the material simplicity of these systems is well compensated

for by geometrical complexity. The energy functionals for filamentous materials are

nonlinear under even modest perturbations. The conformation of a filament is de-

scribed by a unit tangent vector, u(s), where s ∈ [0, L] is the contour length along the

polymer. For the calculations below it is acceptable to replace u(s) by θ(s), where

the angle θ is measured between the tangent to the filament and some reference

orientation. The energy functional has the form

H =

∫ L

0

1

2
K(θs)

2 + V sin(χθ)ds, (6.1)

whereK = Y I is a measure of the bending stiffness, Y [N m−2] is the Young’s modulus

of the material and I [m4] is the area moment of inertia, given by the second moment

of the mass distribution in a cross-section perpendicular to the axis of symmetry. 1 V

and χ have different physical meanings in the different applications considered below.

We will study free energy-minimizing solutions to Eq. 6.1.

6.2 Kinks in filamentous aggregates

We start by examining kinked helices in multiwalled carbon nanotubes (MWNTs) and

in the acrosome of horseshoe crab (Limulus) sperm. MWNTs are fibers composed

of concentric graphene tubules. They show promise as components of nanoelectronic

devices, field-emission displays, and high-strength composites. MWNTs are usu-

ally fairly straight, but under some growth conditions tubes form with a corkscrew

1For molecular-scale objects Y and I are not separately well-defined, but their product is.
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Figure 6.1: Kinks in bent fibrillar aggregates. a) MWNT [206], b) Limulus acro-
some [46].

shape [70, 82, 205]. The tubes grow out of molten catalyst particles that have been

supersaturated with carbon, and the corkscrew shape arises when there is a nonuni-

form rate of deposition of carbon around the circumference of the tube [4]. Close

examination of a corkscrew MWNT often shows that the tube is composed of rel-

atively straight sections joined at kinks [206, 14]. An example of this is shown in

Figure 6.1.

The acrosomal process of a Limulus sperm is a ∼ 50 µm-long rod of bundled actin

filaments. In a free-swimming sperm the acrosome is coiled around the base of the

sperm. When the sperm encounters an egg, a calcium signal causes the acrosome

to uncoil so that it juts out the front of the sperm and harpoons the egg [183].

Interestingly, the coiled acrosome is also composed of straight sections joined at kinks,

as shown in Figure 6.1 [47].
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The occurrence of a kinking instability in helices of these two seemingly dissim-

ilar rods suggests that the kinks may arise through a common mechanism. Ihara

and coworkers [87] and Dunlap [53, 52], have proposed a model of helix-formation

in carbon nanotubes based on pentagon-heptagon paired defects (PHPDs). Putting

a pentagon and heptagon of carbon atoms on diametrically opposite sides of a nan-

otube introduces a kink into the nanotube. Arrays of such kinks form a helix. Unlike

the mechanism discussed in this section, forming PHPDs requires breaking covalent

bonds. The PHPD mechanism also does not account for the observed periodicity

of the kinks, nor why PHPDs should align in successive shells of a MWNT to pro-

duce localized kinks. Furthermore, it is not clear why kinked helices are observed in

MWNTs but not in single walled nanotubes (SWNTs). Finally, the PHPD mecha-

nism is specific to carbon nanotubes, and a different mechanism would be needed for

the acrosome.

I propose a general model of kinking in fibrillar aggregates. Consider an aggre-

gate of fairly inextensible fibers that are weakly coupled to each other. Both the

concentric graphene shells in MWNTs and the actin filaments in the acrosome fit this

description. Each fiber has corrugations along its length because it is composed of

discrete molecular or atomic monomers; these corrugations reflect the periodic nature

of the fiber and its interaction with its neighbors. Adjacent fibers are most stable

when their corrugations are in registry, but this cannot occur everywhere along a

bent aggregate. Bending or twisting introduces an effective lattice mismatch between

fibers on the inside of the curve and those on the outside of the curve. Kinks develop

where outer fibers slip one lattice constant behind their inner neighbors. The energy

cost of introducing a kink is less than the energy gained by straightening segments
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between kinks.

Simple geometry determines the angle each kink subtends. Let D be the distance

between adjacent fibers, projected onto the plane of the curve, and S be the period

of the corrugations along a fiber. Bending the aggregate through an angle θk = S/D

leaves each fiber exactly one corrugation behind its inner neighbor. The interaction

energy per unit length between adjacent fibers, Uint(s), is a periodic function of their

relative axial displacement, with period S. We approximate this interaction with a

simple sinusoidal potential:

Uint(s) = −∆γ

2
cos

(
2πD

S
θ(s)

)

, (6.2)

where ∆γ measures the strength of the corrugations in the interaction potential and

the contour of the aggregate is characterized by the angle, θ(s), between its orientation

at position s and the orientation of one end. We take θ(0) = 0 so that the corrugations

are in registry at the beginning of the aggregate.

Each fiber experiences a bending energy as well as the interfacial energy, so the

total energy per unit length is:

U(s) =
K

2
(θs)

2 − ∆γ

2
cos

(
2πD

S
θ(s)

)

, (6.3)

where K is the bending constant of a single fiber, and a s subscript indicates a

derivative with respect to contour length. To find the function θ(s) that minimizes

H =
∫ L

0
U(s)ds, where L is the total length of the aggregate, we set the variational

derivative δ[H ] = 0. The equation of equilibrium for the aggregate is

Kθss =
χ

2
∆γ sin(χθ) (6.4)

where the new variable χ ≡ 2πD/S. This equation appears under many guises,

and is variously known as the physical pendulum equation, the Frenkel-Kontorova
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model [69, 66], or the steady-state sine-Gordon equation. Soliton-like solutions to this

equation have been applied to solid-state diffusion [19], propagation of ultra-short op-

tical pulses [108], field-theories of elementary particles [171, 172, 62], epitaxial growth

of thin films [196, 105, 162], diffusion of flux in extended Josephson junctions [7],

and pairing of complementary strands of DNA [61, 160]. The Frenkel-Kontorova

model provides a nonlinear microscopic description of periodic dislocations that oc-

cur in lattice-mismatched epitaxial layers. Here the lattice-mismatch is replaced by a

curvature-induced effective lattice mismatch. Srolovitz, Safran and Tenne [175, 159]

used the concept of effective lattice mismatch to develop a mesoscopic continuum

model of kinking in thin 2-dimensional films, but they did not consider the mechanics

in the vicinity of the kink as I do here.

When χ = 1 the solutions of 6.4 correspond to the standard elasticæ of a homoge-

neous isotropic rod (or equivalently to solutions of the simple pendulum, with s being

a time-like variable). In general χ 6= 1 and a range of other interesting shapes results.

For χ > 1 we find kinked aggregates, where χ gives the number of kinks per loop of the

aggregate. With the initial value θ(0) = 0, the aggregate switches from being essen-

tially straight, with small sinusoidal perturbations, to kinked at θs(0) ≥ (2∆γ/K)1/2,

where the equality corresponds to the separatrix solution of the elastica with a single

loop (or equivalently, the solution for the pendulum that delineates the oscillatory

solutions from the rotating solutions). As θs(0) increases beyond (2∆γ/K)1/2 the

aggregate adopts an ever more circular aspect.

When the kinks are far apart so that the sections between kinks are approximately

straight, it is possible to solve analytically for the shape of a kink. Multiplying both

sides of Eq. 6.4 by θs and integrating with the boundary conditions θs(−∞) = 0 =
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θs(∞) yields

θ(s) =
4

χ
tan−1

[

exp

(

sχ

√

∆γ

2K

)]

. (6.5)

Eq. 6.5 shows that the kink occurs over a length

lk ≈ 1

χ

√

2K

∆γ
, (6.6)

as could be expected on dimensional grounds. The energy of a single kink is obtained

by substituting the solution 6.5 into the energy functional 6.3 to yield

Uk =
4

χ

√

2K∆γ (6.7)

Figure 6.2 shows the curve obtained for χ = 8, and θs(0) = 1.0001 × (2∆γ/K)1/2.

In real systems the corrugation potential is not a perfect sinusoid, so kinks will in

general have a shape slightly different from that described by Eq. 6.5.

Structural data obtained by electron-microscopy allows us to apply this model

to the Limulus acrosome [169]. The crosslinks between fibers have a period of S =

55 Åalong a filament, and the separation between filaments is D = 147 Å. The ratio

S/D gives a kink-angle of θk = 0.37 rad, or 21◦, in reasonable agreement with the

observed kink angle of 24◦.

We can also estimate the distance between kinks from the molecular structure. A

cross-section of the acrosome shows that the actin fibers are hexagonally packed. For

all kinks to lie in the same plane, the acrosome must twist through a multiple of 60◦

between kinks. The actin monomers are spaced by 27 Å, and the crosslinking protein

scruin introduces a twist of 0.23◦ per monomer when the acrosome is coiled [46].

Thus, the spacing between kinks is roughly 27 Å × 60◦/0.23◦ = 7000 Å. From the

kink-angle and the spacing between kinks we find that the coiled acrosome makes one

loop every 10 µm of its length, to produce a coil with a diameter of 3.2 µm. This
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Figure 6.2: Energy-minimizing shape of a bent aggregate of corrugated fibers. The
corrugation represents the periodicity of the inter-filament interactions. The fibers
cannot maintain registry around a curve. Forming a kink minimizes the length that
is out of registry but introduces an elastic penalty from the high curvature. Shown
above is a kinked structure corresponding to the solution of Eq. 6.4 with χ = 8,

θs(0) = 1.0001×
(

2∆γ
K

)1/2
. The outer fiber has one additional corrugation at the kink,

indicated by the green bar.
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coil just fits inside the head of the sperm. Thus the molecular dimensions of the

acrosomal constituents interact to set the size of the entire coiled acrosome.

The modified Frenkel-Kontorova model is more difficult to apply quantitatively to

MWNTs because the constituent fibers (SWNTs) are concentric rather than adjacent.

Nonetheless, similar reasoning applies. Thin graphite sheets form a kinked twin

matrix boundary of 20◦48′ about [1100] [96], which is very close to the kink-angle

observed in MWNT helices. The surfaces of a MWNT on the inside and outside of

a curve develop these kinks to relax strain. It is noteworthy that in cross-section

MWNTs also often appear polygonal rather than circular. This polygonalization

cannot be explained in terms of pentagon-heptagon defects, but arises naturally in a

model based on curvature-induced lattice mismatch. The twin matrix boundary angle

of 20◦48′ implies that a cross-section of a MWNT should have roughly 18 edges. In

practice some of these edges are typically too short to observe. Polygonalization

also occurs in nested fullerenes [174, 51] and WS2 nanoparticles [165]. TEM pictures

of MWNTs show that there is also some delamination of the graphene sheets and

buckling in the popliteal region of each kink. These effects occur because of topological

constraints on the graphene sheets in MWNTs, and are better explained in terms of

buckling of a hollow tube.

Although we have focused on lattice-slip in the presence of spontaneous curvature

as the source of mechanical nonlinearity leading to planar kinks, the same mechanisms

will give rise to kinks in nonplanar fibrillar aggregates because of the competition

between bend, twist and adhesion. More generally these localized structures arise

in aggregates because of the presence of a non-convex bending energy functional or

equivalently, by virtue of simple dimensional arguments that penalize kinks and bends
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differently.

6.2.1 Finite temperature

At finite temperature thermal fluctuations may also nucleate kinks. The density of

thermally activated kinks is proportional to e−Uk/kBT , where Uk is given by Eq. 6.7.

For the present systems Uk � kBT , so thermally activated kinks may be neglected.

In other biological systems, the corrugations in the interfilament potential may be

comparable to or less than kBT . Consider a hexagonally packed bundle of corrugated

filaments. The strength of the corrugations that any one filament feels is determined

by the degree of longitudinal order among the six neighbors. If the neighbors are

disordered, then the effect of their corrugations cancels. As the temperature increases,

the disorder among filaments grows, which decreases the energetic cost of the disorder.

These are the ingredients for a longitudinal melting phase transition.

The longitudinal melting transition should appear as a sharp decrease in bending

stiffness of the aggregate. The bending stiffness of an aggregate in which the individ-

ual filaments maintain registry (coherent bending) scales as n2, where n is the number

of filaments in the aggregate. When the individual filaments can slip relative to each

other, the bending stiffness scales as n. Kis and coworkers recently measured the

bending stiffness of an aggregate of microtubule filaments. They observed an abrupt

decrease in stiffness above 25◦ C [99], but did not provide a model to explain these

effects. A project for future research will be to develop a quantitative model of the

longitudinal melting phase transition.
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6.3 Kinks on polymers

As a second example of kinks on biological filaments, we study the conformation

and force-extension curve of a polymer in a spatially uniform AC electric field. The

polymer backbone minimizes its energy by aligning with the field; entropy opposes

this alignment. In a strong field, hairpin kinks develop between regions of opposite

alignment. These kinks act as a 1-dimensional gas of particles and antiparticles that

diffuse along the polymer backbone. We calculate the equation of state of the kink-gas.

The Langevin equation of motion has the structure of an overdamped sine-Gordon

equation on a sphere, with kinks represented by solitons. The theory is applied to

recent experiments on dielectrophoretic stretching of DNA.

The statistical mechanics of polymer chains is highly developed, including effects

such as excluded volume [64, 55, 42], finite stiffness [68], interchain interactions [65,

50], and heterogeneous intrachain interactions [161]. Recent theory [63, 140, 81], and

single-molecule experiments [156], have dealt with polymers under perturbed condi-

tions (e.g. tension [11, 131], compression [198], torsion [180], elongational flow [111],

shear flow [173]).

There is increasing interest in using high-frequency electric fields to manipulate

polymer molecules, especially DNA, in solution [194, 195, 182, 6, 188, 72, 48]. A field

interacts with the molecular polarizability to generate forces, torques and internal

stresses, a phenomenon known as dielectrophoresis (DEP) [90]. DEP-induced stresses

may lead to functionally significant conformational changes in biomolecules. For

instance, 16 µm-long λ-DNA, tethered by one end to an electrode, extends to its full

contour length away from the electrode when an AC voltage is applied [72]. This

stretching is counterintuitive because the electrode generates a field-gradient which
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seeks to pull the DNA towards the electrode. In this section I develop a model

for the conformation of a polymer strand in an AC field. The model explains the

stretching phenomenon and suggests other experiments related to DEP manipulation

of macromolecules.

The model consists of a polyelectrolyte strand of length L, subject to a spatially

uniform AC field of r.m.s. amplitude E, and a tension, A, applied to the ends of the

strand and parallel to the field. The tension could occur in a single-molecule pulling

experiment or serve as a proxy for more complex body forces induced by fluid flow or

inhomogeneities in the field.

When dielectrophoresis is performed in water, AC fields are used rather than DC

fields, to avoid ionic screening, electrochemistry, and electrophoresis. Typical AC

fields in DEP have frequencies of 100 KHz - 5 MHz. A recent study by Netz [141]

examined short polymer strands in DC fields. We find qualitatively different behavior

for long strands in AC fields.

Polarization of polyelectrolytes such as DNA is largely due to motion of counteri-

ons, some condensed on the molecule, and some surrounding it in a diffuse cloud. This

polarizability is highly anisotropic, being greatest parallel to the molecular backbone.

The theory of polarization of polyelectrolytes is reviewed in [136, 193].

For long molecules in high frequency fields, the local polarization depends only

on the local field. This is not the case for short molecules or for low-frequency fields,

where the field can induce a global reorganization of the counterions. If the frequency

of the field is ν, in a half-period an ion diffuses a distance δD =
√

D/ν, where D is the

diffusion constant. The ion also oscillates with an amplitude δµ = µE/2πν, where µ is

the mobility (with the ionic charge included in its definition). For a Na+ ion in water
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(D = 1.3× 10−9 m2/s, µ = 5× 10−8 m2/V s), under typical conditions for stretching

DNA (E = 1 MV/m, ν = 1 MHz), we find δD = 36 nm and δµ = 8 nm. The induced

polarization in any bit of the polymer can only depend on the field averaged over a

ball whose radius is of order δD. DEP stretching is typically studied in DNA strands

many microns long, so it is justified to assign the molecule a polarizability per unit

length, α.

Assuming negligible transverse polarizability, the induced linear polarization den-

sity at position s is dp(s) = α(E ·u)du, where u(s) is the unit-vector locally tangent

to the polymer. The polarization interacts with the field to give a time-averaged

electrostatic free energy per unit length,

Un(s) = −V cos2 θ(s), (6.8)

where V ≡ 1
2
E2α and θ(s) is the angle between the polymer backbone and the field.

This energy seeks to align the polymer backbone with the closer of two orientations

along the field axis, and is analogous to the interaction energy in the optical Kerr

effect.

The time-averaged Hamiltonian for a polymer in an AC field is the same as that of

a polymer dissolved in a nematic liquid crystal subject to a Maier-Saupe mean-field

interaction. The latter problem has been studied in detail. De Gennes [43], and inde-

pendently Khokhlov and Semenov [97], showed that kinks play a crucial role at low

temperature. The statistical mechanics of polymers in a nematic field was developed

by Warner, Gunn, and Baumgärtner [192] and Williams and Warner [199]. These au-

thors used an analogy to a quantum mechanical tunnelling problem to estimate the

linear density of kinks. Kamien, Le Doussal, and Nelson, developed a formal analogy

between the polymeric problem and motion of Bosons in 2-dimensions [92, 93]. In
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analogy to the case of polymer liquid crystals, we call Un the nematic energy. Below

we examine the conformation of a polymer in an AC field, first in the limit of weak

field and weak tension, then in the limit of strong field and weak tension, and finally

in the limit of either very strong field or very strong tension. The meanings of these

limits will be explained.

6.3.1 Freely jointed chain

For weak tension and weak AC field, it is acceptable to model the polymer as a

freely jointed chain (FJC) of N rigid sticks, each of length b, and each assuming

an orientation independent of its neighbors. For consistency with the more realistic

wormlike chain (WLC) model, the stick length should be b = 2lp, where lp is the

persistence length of the WLC.

Consider the setup of Figure 6.3 in which a stick of a FJC is subjected to a

θ 

Ε 

F 

b 

Figure 6.3: An element of a freely jointed chain in an oscillating electric field E and
subject to a force, A, parallel to the field. The angle θ is measured between the stick
and the field.

tension A and a parallel AC field E. The frequency is high enough that the polymer

undergoes negligible motion over a single period. For DNA molecules in water, this

assumption is valid for frequencies greater than ∼ 100 KHz [81, 59]. The interaction

between the field and excess charge on the polymer has zero time-average, so the



126

 

θ 
0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

P(
θ )

 

f = 0.25    τ = -20 a) 
 

0.5 1 1.5 2 2.5 3

0.1

0.2

0.3

0.4

0.5

θ 

P(
θ )

 

f = 0.25    τ = 0 b) 
 

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

θ 

P(
θ )

 

f = 0.25    τ = 20 c) 

Figure 6.4: Distribution of stick orientations as a function of AC field-strength. In
all cases the force (f = 0.25) introduces a slight bias towards the right. a) Strong
alignment with the field restricts sticks to point either to the left or to the right. b)
Under no AC field tension is the only influence on stick orientation. c) A field that
seeks to align the sticks perpendicular to itself favors the orientation θ = π/2. This
case, called negative dielectrophoresis, requires that α < 0, which can occur if the
solvent is more polarizable than the polymer.

lowest-order interaction is between the field and the polarizability. The orientation-

dependent energy of each stick is UFJC = −Ab cos θ − V b cos2 θ. The AC field biases

the sticks to point towards either pole, and tension favors one pole over the other.

The partition function of a single stick is

ZFJC =

∫ π

0

sin θ exp

(
Ab cos θ + V b cos2 θ

kBT

)

dθ. (6.9)

The integral in Eq. 6.9 may be evaluated explicitly in terms of error functions, and

from the resulting expression any thermodynamic property of the FJC determined.

For instance, the angular distribution function, P (θ), is

P (θ) = 2

√
τ

π

sin θ exp
[

− (f+2τ cos θ)2

4τ

]

erf
(

f+2τ
2
√

τ

)

− erf
(

f−2τ
2
√

τ

) , (6.10)

where f ≡ −Ab/kBT measures the dimensionless tension and τ ≡ −V b/kBT measures

the dimensionless nematic energy. Figure 6.4 shows this distribution for weak force

(f = 0.25), and for varying strengths of the AC field.



127

 

1 2 3 4 5 6 

0.2 

0.4 

0.6 

0.8 

1 

f (Tension) 

<
x>

/L
 (

E
xt

en
si

on
) 

Figure 6.5: Force-extension curves for a freely-jointed chain under varying AC field
strengths. ( ): Langevin Function, 〈x〉/L = coth f − 1/f , corresponding to τ = 0
(no nematic field). (·······): τ < 0. ( ): 〈x〉/L = tanh f corresponding to τ → −∞
(strong alignment with the field). ( ): τ > 0 (alignment perpendicular to the
field).

For strong alignment (τ � 0), the sticks act as a two-state system (analogous to

a spin-1
2
). For zero alignment (τ = 0) the stick orientation is a continuous variable

(analogous to a classical spin). For strong anti-alignment (τ � 0) the sticks are

confined to the plane perpendicular to the field (analogous to an X-Y model). Each

of these cases can occur in real experiments; a single polymer may even exhibit all

three behaviors, depending on the solvent, field strength, and field frequency.

Each stick has a mean end-to-end extension of 〈x1〉 = kBT
∂

∂A
lnZFJC. Since the

sticks are independent, the total extension is 〈x〉 = N 〈x1〉. Figure 6.5 shows force-

displacement curves for a range of AC field-strengths.

The zero-extension spring constant of the FJC is k =
(

∂〈x〉
∂A

|A=0

)−1

. A weak AC

field softens the spring constant by favoring steps with a larger displacement along
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the field-axis. The zero-displacement spring constant evaluates to:

k =
2τkBT/(Nb

2)

1 − 2
√

τ
π

exp−τ
erf

√
τ

. (6.11)

In the limit of weak aligning field (τ ∼ 0), this simplifies to:

k ≈ 3kBT

Nb2
+

4τkBT

5Nb2
. (6.12)

For strong aligning fields (τ � 0) the asymptotic spring constant is:

k ≈ kBT

Nb2
. (6.13)

Thus a strong AC field decreases the entropic stiffness of a FJC by a factor of three

along the field direction, corresponding to the transition from a 3-dimensional random

walk to a 1-dimensional random walk. Khokhlov and Semenov obtained the same

result for the linear susceptibility of a FJC in a nematic solvent, assuming a constant

permanent dipole moment per unit length [97]. For strong anti-aligning fields (τ � 0),

the spring constant grows linearly with the nematic field: k ≈ 2τkBT/(Nb
2).

The softer spring constant in a strong AC field also implies a larger radius of

gyration, R2
G = (kkBT )−1, along the field-axis. We find

R2
G ≈ Nb2

3
+

4NV b3

45kBT
. (6.14)

Thus a weak AC field turns a roughly spherical random coil into a prolate spheroid

aligned along the field. However, no field strength will lead to spontaneous extension

of the FJC; rather in the strong-field limit the FJC undergoes a 1-dimensional random

walk parallel to the field.
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6.3.2 Kinks

The freely-jointed chain model utterly fails in a strong nematic field because half of

the joints involve a bend through roughly 180◦. These hairpins should be penalized by

a large bending energy. The wormlike chain (WLC) model includes bending energy

and is thus more appropriate for large nematic fields.

The Hamiltonian of a WLC under no tension in a nematic is

H =

∫ L

0

(
1

2
K(θs)

2 − V cos2 θ

)

ds. (6.15)

We seek to find the function θ(s) that minimizes the energy H . Setting the variational

derivative δ[H ] = 0 yields a local equation for the shape of the hairpin:

Kθss − V sin 2θ = 0, (6.16)

which is very similar to the equation of motion that described kinking in fibrillar

aggregates (Eq. 6.4).

We are interested in the large-amplitude solution where θ swings from 0 to π (i.e.

the polymer reverses direction). DeGennes first obtained an exact analytical solution

to Eq. 6.16 [43] in the same way we solved for the shape of a kink in a fibrillar

aggregate. The kink shape is:

θhp(s) = 2 cot−1 exp (−s/s0)) , (6.17)

where s0 ≡
√

K/2V is the characteristic size of bends in the polymer. Figure 6.6

shows the shape of a hairpin kink. The lateral displacement (see Figure 6.6) across

a kink is l = πs0. The total energy stored in a kink is given by substituting θhp(s)

from Eq. 6.17 into Eq. 6.15 to yield

Uk = 2
√

2KV = 2kBT
lp
s0
, (6.18)
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Figure 6.6: a) Shape of a hairpin kink in a polymer strand subject to a strong AC
field. b) Conformation of a polymer containing ten kinks of random position and
orientation. All kinks are the same size: those that appear thinner are viewed edge-
on.

where lp ≡ K/kBT is the persistence length of the polymer, the distance over which

thermal fluctuations erase memory of the polymer orientation. For the kink to have

a well-defined shape we require that lp � s0, or equivalently, that Uk � 2kBT .

6.3.3 The kink gas

At low temperature or strong nematic field, kinks have well-defined size and energy,

so we can think of them as particles and study their thermodynamics. Kinks come in

two varieties: the kink of Figure 6.6, and an antikink formed by the mirror-image of

Figure 6.6. Clearly kinks and antikinks must alternate along the polymer. If a kink

and antikink collide they annihilate, while thermal fluctuations can create new kink-

antikink pairs. The interaction between kinks decays exponentially with distance,

so here we assume a low enough density to treat kinks as noninteracting particles.

Following Seeger and Schiller [167] we find the number of kinks, neq, and free energy,

F , for a kink-gas on a polymer of length L, with free ends. Then we consider the case

where the ends of the polymer have a fixed end-to-end distance.
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Free ends

We want the free energy of a gas of n kinks on a chain of length L, with free ends.

Divide the chain into N sections, each of length l. Each section is short enough to

contain not more than one kink (N � n), but still much larger than the size of an

individual kink (l � s0). Within these constraints, the choice of N is arbitrary–

observable quantities will be independent of N . After the n kinks are distributed into

the N bins, they are alternately assigned to be kinks and antikinks. The number of

n-kink states available to the polymer is:

Ω(n) =
Nn

n!
(6.19)

with an entropy Sn = kB ln Ω(n). If the ends of the chain can point in either direction,

then Eq. 6.19 should be multiplied by 2 because there is an arbitrary choice of whether

the first hairpin should be a kink or an antikink. For simplicity we assume that one

end of the chain has a fixed direction.

Let f1 be the free energy of a single kink on a section of length l. The energy

of a kink is just Uk, given by Eq. 6.18, but the free energy includes the entropy of a

kink, which has contributions from the vibrational modes of the kink, its freedom to

reside anywhere along the length l, and its freedom to lie in any plane parallel to the

field. Here we assume that f1 is known. In section V we calculate f1 and show that

its dependence on l cancels the dependence on the arbitrary choice of N , and hence

l, in all observable quantities.

The total free energy is

Fn = nf1 − TSn. (6.20)
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In thermal equilibrium there is no benefit to changing the number of kinks, so

∂Fn

∂n
= 0 = f1 − T

∂Sn

∂n
. (6.21)

Applying Stirling’s approximation to Eq. 6.19 yields

∂Sn

∂n
= kB ln

N

n
. (6.22)

Inserting this result into Eq. 6.21 and solving for n gives

n0
eq = N exp

(−f1

kBT

)

. (6.23)

Substituting Eq. 6.23 into Eq. 6.20 gives the equilibrium free energy:

F = −kBTN exp

(−f1

kBT

)

= −kBTn
0
eq. (6.24)

So each kink quasiparticle contributes a free energy of −kBT .

Fixed ends

If the ends of the chain are fixed at separation x, then there is a constraint on the

placement of kinks and antikinks. Let L+ and L− be the total chain lengths pointing

to the right and left, respectively. Then

L+ + L− = L (6.25a)

L+ − L− = x. (6.25b)

If the entire chain is divided into a large number, N , of segments, each of length l,

then the portions of the chain pointing to the right and left are divided into N+ and
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Figure 6.7: a) Partitioning of kinks along a polymer strand with fixed endpoints.
Kinks are distributed with no constraints along section L+ and antikinks are dis-
tributed along L−. The conformation is obtained by concatenating alternate left-
and right-pointing segments. b) Equilibrium density of kinks as a function of end-to-
end extension.

N− segments, respectively:

N+ =
1

2
(N + x/l) (6.26a)

N− =
1

2
(N − x/l) (6.26b)

At first the constraint on the end-to-end displacement seems to complicate matters

considerably. However a simple geometrical construction makes it easy to incorporate.

Imagine sorting the polymer chain so that all the right-pointing segments are

grouped together into a chain of length L+ and all the left-pointing segments are

grouped together into a chain of length L− (Fig. 6.7). To generate an n-kink configu-

ration with extension x, place (n− 1)/2 kinks on the segment L+, with no restriction

on their placement, and similarly place (n− 1)/2 antikinks on the segment L−. The

position of the last kink is fixed at the junction of the L+ and the L− segments.2 Thus

2Assuming n is odd. The same approach works for even n, placing n/2 − 1 kinks in each of
L+ and L−, then placing kink number n − 1 anywhere on L. Kink number n is still fixed at the
boundary between L+ and L−
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the global constraint on the segment lengths has been shifted to a local constraint on

the position of the last kink.

The polymer conformation is generated by concatenating the first segment from

L+, then the first segment from L−, then the second segment from L+, etc. The

arbitrary choice of the direction of the initial segment introduces a factor of 2 into

the density of states, but after the initial choice there is no more freedom in assembling

the chain. As before we assume that the ends of the chain have fixed direction so we

can ignore the factor of 2.

The number of ways to distribute (n− 1)/2 ≈ n/2 kinks among the N+ segments

and (n− 1)/2 ≈ n/2 antikinks among the N− segments is:

Ω(n) ≈ N
n/2
+
(

n
2

)
!

N
n/2
−
(

n
2

)
!
, (6.27)

again assuming N+, N− � n� 1. The free energy is still given by Eq. 6.20, but the

entropy is

Sn = kBn

(

1 +
1

2
ln

4N+N−
n2

)

, (6.28)

so

∂Sn

∂n
=
kB

2
ln

4N+N−
n2

, (6.29)

whence from Eqs. 6.21 and 6.26 the number of kinks is

neq = 2(N+N−)1/2 exp

(−f1

kBT

)

= n0
eq

√

1 − x2

L2
. (6.30)

Figure 6.7 shows the equilibrium density of kinks as a function of the end-to-end

extension.
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The free energy of the chain is given by Eq. 6.20, with Sn from Eq. 6.28 and neq

from Eq. 6.30:

F = −kBTN exp

(−f1

kBT

)√

1 − x2

L2

= −kBTneq. (6.31)

The restoring force (analogous to the pressure) is A = −∂F/∂x, which yields the

equation of state:

A =
n0

eq

L
kBT

x√
L2 − x2

. (6.32)

The restoring force is proportional to the density of kinks in the unconstrained chain,

which is exponentially suppressed by the nematic field. This result is very different

from the result on the FJC. The next section is devoted to calculating the entropic

contribution to f1.

6.3.4 Free energy of a kink

To calculate the free energy of a single kink, it is necessary to examine the internal

vibrational modes of a kink. If the polymer is constrained to lie in a plane, then

its Langevin equation of motion has the structure of the overdamped sine-Gordon

equation, with kinks represented by solitonic solutions. Seeger and Schiller [167] first

calculated the free energy of a kink obeying this equation in the context of kinked

dislocation lines in crystals. They also calculated the equilibrium rates of creation

and annihilation of kink-antikink pairs. Büttiker and Landauer [26, 25] went on to

study the system in an external field of force, and, in collaboration with Bennett

and Thomas, to develop the hydrodynamics of the kink-gas [13]. Recently there have

been analytical studies on diffusion of kinks [157], the non-ideal kink-gas [79], and
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creation and annihilation rates in the driven kink-gas [31, 122, 123, 36]. The last

problem generated considerable controversy in the literature [23, 78, 24]. Computer

simulations have also been performed on the sine-Gordon gas and the related φ4

system [77, 3, 16].

The free energy is defined F = −kBT lnZ, where Z is the partition function. The

change in free energy upon creating a single kink in a chain of length l is

f1 = −kBT ln
Zk

Zs
, (6.33)

where Zk and Zs are the partition functions of the kinked and unkinked chains,

respectively. Rather than solve for the free energy, we will solve directly for the

equilibrium number of kinks on a chain with free ends, given by (insert Eq. 6.33 into

Eq. 6.23):

neq =
L

l

Zk

Zs
. (6.34)

Readers uninterested in mathematical details can skip directly to the answer, Eq. 6.60.

The partition functions Zk and Zs depend on the harmonic modes of a polymer

with a single kink and of a straight polymer, respectively. First we restrict the polymer

to lie in a plane. The derivation below closely follows Appendices B and C of [26]. In

the subsequent subsection we generalize these results to the 3-dimensional case.

Planar case

If the polymer is constrained to lie in a plane, then its energy is given by Eq. 6.15.

The Langevin equation describing the relaxation of a nonequilibrium conformation

is:

γθt = Kθss − V sin 2θ + ζ(x, t), (6.35)
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where γ is the orientational drag coefficient of the polymer (assuming local hydrody-

namics) and ζ(x, t) is a Brownian force that obeys the fluctuation-dissipation relation:

〈ζ(x, t)ζ(x′, t′)〉 = 2γkBTδ(t− t′)δ(x− x′). (6.36)

Eq. 6.35 is a sine-Gordon equation, except for the factor of 2 in the argument of the

sine.

For the straight chain, linearizing Eq. 6.35 about θ = 0 and performing separation

of variables gives the eigenvalue equation:

λ0θ = −Kθss + 2V θ, (6.37)

where the 0 subscript indicates that λ is an eigenvalue for a straight chain. The

solutions are θ(s) = η exp(ıks/s0) with eigenvalue λ0 = 2V (1 + k2). The partition

function of the straight chain is thus:

Zp
s =

∫

dη1 dη2 . . . exp

(

− 1

2kBT

N∑

k=1

λ0,k(ηk)
2

)

= (2πkBT )N/2
N∏

k=1

(λ0,k)
−1/2, (6.38)

where N represents some high-frequency cutoff, and the p superscript is a reminder

that we are restricted to a planar geometry.

For the kinked chain, we linearize Eq. 6.35 about the shape of a hairpin, θhp(s),

to get:

λ1θ = −Kθss + 2V
(
1 − 2sech2(s/s0)

)
θ (6.39)

where the 1 subscript indicates that λ is an eigenvalue for a kinked chain. The solu-

tions to this equation are well known [39, 157]. There is a zero-frequency Goldstone
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mode corresponding to translation of the kink:

θGM(s) = ξ0sech(s/s0) (6.40)

λ1,0 = 0,

and a series of harmonic modes:

θ(s) = ξk
exp(ıks/s0)(k + ı tanh(s/s0))

√

2π(1 + k2)
(6.41)

λ1,k = 2V (1 + k2).

The kinked and unkinked chains must have the same number of modes, so the ex-

istence of the zero-frequency Goldstone mode means that the kinked chain has only

N − 1 delocalized modes.

The partition function for the kinked molecule is:

Zp
k =exp

(−Uk

kBT

)∫

dξ0 dξ1 . . . exp

(

−1

2kBT

N−1∑

k=0

λ1,k(ξk)
2

)

. (6.42)

In Eq. 6.42, the Gaussian integrals over all ξi6=0 evaluate to:

∫

dξ1 . . . dξN−1 exp

(

−1

2kBT

N−1∑

k=0

λ1,k(ξk)
2

)

= (2πkBT )(N−1)/2

N−1∏

k=1

(λ1,k)
−1/2. (6.43)

The integral over the Goldstone mode,
∫
dξ0, must be handled differently because

of the exponential does not decay (recall λ1,0 = 0). We evaluate the integral over this

mode using a technique of Langer [110]. The first step is to relate the shape of the

Goldstone mode, δθGM(x), to the shape of the hairpin. Adding δθGM(x) to θhp(x)

translates the kink while preserving its shape. Thus from simple geometry it follows

that:

δθGM(x) =
dθhp(x)

dx
. (6.44)
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This result can be checked explicitly by differentiating Eq. 6.17 and comparing to

Eq. 6.40.

The second step is to express the amplitude (in function-space) of the Goldstone

mode in terms of its shape in real space by:

|dξ0| =

[∫ ∞

−∞
(δθGM(x))2 dx

]1/2

ds

=

[
∫ ∞

−∞

(
dθhp(x)

dx

)2

dx

]1/2

ds. (6.45)

The integral in Eq. 6.45 is easily evaluated to yield:

|dξ0| =

(
Uk

K

)1/2

ds, (6.46)

whence the integral over the Goldstone mode becomes

∫

dξ0 = l

(
Uk

K

)1/2

. (6.47)

Having now assembled all the ingredients of both partition functions we can insert

Eqs. 6.38, 6.42, 6.43, and 6.47 into Eq. 6.34 to calculate the density of kinks:

ρp
eq =

(
Uk

2πKkBT

)1/2
(∏N

k=1 λ0,k
∏N−1

k=1 λ1,k

)1/2

exp

(−Uk

kBT

)

. (6.48)

The remaining challenge is to evaluate the ratio of products of the eigenvalues of

Eqs. 6.37 and 6.39:

Q2 =

∏N
k=1 λ0,k

∏N−1
k=1 λ1,k

. (6.49)

McCumber and Halperin [128] considered the more general problem of evaluating Q2

for the differential equations

(
d2

dy2
− 2α(ε)

)

ψ(y) = 0 (6.50)
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and
(
d2

dy2
− 2α(ε) + 2βsech2y

)

ψ(y) = 0, (6.51)

where α(ε) is a linear function of the eigenvalue, ε, and β is a constant. They showed

that

Q2 = lim
ε→0+

ε

∞∏

n=1

[n− 1 + (2α)1/2][n + (2α)1/2]

[n− 1 + (2α)1/2][n+ (2α)1/2] − 2β
. (6.52)

Comparison of Eqs. 6.50 and 6.51 with Eqs. 6.37 and 6.39 shows that α = 1
2
− λ

4V
and

β = 1, whence

Q2 = lim
λ→0+

λ
(2α)1/2 + 1

(2α)1/2 − 1
, (6.53)

which evaluates to Q2 = 8V . Inserting this result into Eq. 6.48 yields

np
eq =

L

l∗
exp

(−Uk

kBT

)

, (6.54)

where the prefactor l∗ is can be variously expressed as:

l∗ =

(
πKkBT

4V Uk

)1/2

(6.55a)

= s0

(
πkBT

2Uk

)1/2

(6.55b)

= lp
√

2π

(
kBT

Uk

)3/2

. (6.55c)

This prefactor contains the entropic component of a kink and sets the natural scale

over which kinks form in the polymer, but does not include the effect of modes

transverse to the kink.

3-dimensional case

Here modes transverse to the kink are included in the partition functions. For the

straight chain, the transverse modes clearly have the same spectrum as the in-plane
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Figure 6.8: Coordinate-system used to describe fluctuations in the orientation of a
polymer chain. This coordinate system is equivalent to conventional polar coordinates
(with the z-axis pointing out of the page and the x-axis parallel to the field), except
that the polar angle, φ is measured relative to the equator.

modes. Thus the full partition function of the unkinked chain is just the square of

Eq. 6.38: Zs = (Zp
s )2.

For the kinked chain we need the equation of motion for excitations perpendicular

to the kink. Taking into account that the tangent vector can lie anywhere on a unit

sphere, the Hamiltonian becomes:

U =

∫ L

0

(
1

2
K(cos2 φ)θ2

s +
1

2
Kφ2

s − V cos2 θ cos2 φ

)

ds, (6.56)

where we have used the non-standard polar coordinates shown in Figure 6.8.

The equation of motion for φ is obtained by taking (δ[U ]/δφ)|θ(s)=θhp
and expand-

ing for small φ(s). This yields:

λ1φ = −Kφss + 2V
(
1 − 2sech2(s/s0)

)
φ, (6.57)

which is exactly the same as the equation of motion for θ(s) (Eq. 6.39)! Thus φ(s)

also has one localized Goldstone mode given by Eq. 6.40 (corresponding to rotation
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of the kink about the axis of the field) and a spectrum of delocalized modes given by

Eq. 6.41.

Since the transverse modes have the same spectrum as the in-plane modes, they

contribute an additional factor of Eq. 6.43 to the partition function. The contribution

of the transverse Goldstone mode must be evaluated separately, though, because the

transverse Goldstone mode rotates the kink rather than translating it.

The translational and rotational Goldstone modes have exactly the same shape:

δθGM(s) = δφGM(s). If adding θ̂ δθGM to θhp translates the kink by ε, then adding

φ̂ δφGM to θhp rotates the kink by an angle ε/s0. This result is obtained by consid-

ering the motion of the polymer at the middle of the kink, s = 0, and noting that

(dθhp/ds)|s=0 = 1/s0. By analogy to Eq. 6.45, the amplitude (in function space) of

the rotational Goldstone mode is:

|dξ0| =

(
Uk

K

)1/2

s0dφ, (6.58)

whence the integral over the Goldstone mode becomes

∫

dξ0 = 2πs0

(
Uk

K

)1/2

. (6.59)

The total partition function of the kinked chain (including in-plane and transverse

modes) has two factors of Eq. 6.43 from the delocalized modes, one factor of Eq. 6.47

from the in-plane Goldstone mode, one factor of Eq. 6.59 from the transverse Gold-

stone mode, and a factor of exp(−Uk/kBT ). Combining these terms and dividing by

the full partition function for the unkinked chain yields:

neq = 4L
Uk

kBT

(
2V

K

)1/2

exp

(

− Uk

kBT

)

. (6.60)

This result agrees exactly with a calculation based on a quantum mechanical anal-

ogy [192, 75], but in our view has a simpler physical interpretation.
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6.3.5 WLC under large tension

When the combination of tension and AC field reduces the density of kinks to less

than one per chain length, then Eq. 6.32 is no longer applicable. In the absence of

kinks, the tangent vector resides completely in one hemisphere, so small fluctuations

in orientation are the only factor to prevent complete extension. To calculate the effect

of these fluctuations we introduce the tension, A, explicitly into the Hamiltonian of

Eq. 6.15:

U =

∫ L

0

(
1

2
K(θs)

2 −A cos θ − V cos2 θ

)

ds. (6.61)

Under the assumption of almost complete extension, θ is small so we may expand

Eq. 6.61 in θ, yielding

U ≈ 1

2

∫ L

0

(
K(θs)

2 + Aeff θ
2
)
ds, (6.62)

where the effective tension, Aeff ≡ A + 2V , arises because the energies due to the

tension and the AC field are both quadratic in θ.

Hamiltonian (6.62) is identical to that of a WLC under tension in the absence

of a field, with the replacement of Aeff for A. Thus we can quote the well-known

force-extension relation of a WLC under large extension [125] to get

Aeff =
kBT

4lp

(

1 − 〈x〉
L

)−2

. (6.63)

In a field strong enough to suppress kinks, the polymer spontaneously extends to a

length given by Eq. 6.63. The effective tension, Aeff , is positive even if A = 0, because

the AC field traps the polymer in an orientation centered around one pole. Tension

(A > 0) further penalizes fluctuations in orientation and leads to additional extension.

Under compression (A < 0), the polymer may lower its energy by an amount 2AL
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if it reverses direction. This reversal may come about through nucleation of a kink

and antikink which are driven apart by the compressive force. For weak compression,

the timescale for spontaneous formation of a critical kink-antikink nucleus is τ ∝

exp(−Uk/kBT ) [26].

6.3.6 Discussion

Washizu and coworkers first showed that it is possible to manipulate and stretch DNA

molecules in solution by applying high frequency AC potentials to microfabricated

electrodes [194, 195]. This work led to studies on fluorescence anisotropy in AC field-

stretched DNA [182], studies of DNA conformation in polyacrylamide gels subject to

low-frequency (0.1 - 100 Hz) AC fields, and variant trapping schemes differing in the

surface attachment of the DNA and the electrode geometry [6, 48, 72].

In the above experiments, the electrode geometry creates an inhomogeneous field,

and the DNA is attracted to regions of high-intensity, typically near the electrode

corners. This much can be explained by simple dielectrophoresis. But as the DNA is

attracted to the electrodes, it also straightens and extends to its full contour length

away from the electrode (like hairs on the head of a person touching a van de Graaf

machine). If the DNA experienced simple attraction to the electrodes, it would ball-

up on the surface. Why does it straighten?

In the model presented here, the molecule straightens because the field is strong

enough to suppress the formation of kinks. Without the inclusion of the bending

energy (i.e. in the FJC model), the polymer does not spontaneously extend in any

AC field strength. Experiments are under way to provide a quantitative test of this

theory. Single-molecule force-extension curves measured in an AC field should provide
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a quantitative test of the predictions in the various regimes, given by Eqs. 6.11, 6.32

and 6.63.

The experiments on dielectrophoretic stretching of DNA certainly contain many

complex effects that were ignored in this section. One effect is the role of inhomo-

geneity in the field. An inhomogeneous field generates body forces on the polymer

backbone, so the tension varies along the length, and at each point the tension de-

pends on the location of all other points on the polymer. Furthermore, the position

of each point depends on the tension everywhere in the molecule. Thus the problem

of the molecular conformation becomes highly nonlocal.

A second effect that has been ignored is that each chain-element sees not only

the applied field, but also fields due to induced dipoles on the rest of the chain and

in nearby chains. This effect also introduces a nonlocal character to the problem.

One approach is to introduce a Clausius-Mossotti mean-field, where the electric field

is modified by the local density of chain-elements. It is justified to ignore nonlocal

electrodynamics in the low-density limit.

It is well known that the activity of many DNA-active enzymes depends on the

conformation of the underlying strand. Through its effect on conformation, an intense

AC field may provide a way to rapidly and reversibly modulate both the kinetics

and thermodynamics of biochemical processes, supplementing the traditional tools of

temperature and chemical environment. Furthermore, it may be possible to design

nanoscale polymeric actuators in which an AC field drives a conformational change.
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6.4 Kinks in confined polymers

As a final example of kinks in biological filaments, we study polymers confined to a

plane. There is increasing interest in building nanofluidic devices for manipulating

polymer molecules, especially DNA [121, 187]. When the confined dimension becomes

less than the persistence length of the polymer (∼ 50 nm for DNA), certain topological

defects arise that are not stable in the unconfined polymer.

Consider a semiflexible polymer constrained to lie in a plane, with self-crossings

allowed. This scenario could occur in a fluid gap of height h, provided lp > h � d,

where lp is the persistence length and d is the molecular diameter. This scenario

also pertains to the experiments of Maier and Rädler, in which DNA molecules were

dissolved in a fluid lipid bilayer [121]. If the polymer is subjected to tension A, then

the Hamiltonian is

H =

∫ L

0

(
1

2
K(θs)

2 − A cos θ

)

ds, (6.64)

where the angle θ is measured relative to the direction of the tension. Taking the

variational derivative of Eq. 6.64 yields the Langevin equation of motion:

γθt = Kθss − A sin θ + ζ(x, t), (6.65)

where γ and ζ(x, t) are the same as in Eq. 6.35. Eq. 6.65 is the same as Eq. 6.35 for

a polymer in a nematic field, apart from the factor of 2 in the argument of the sine.

The force-extension curve for large extension is obtained by linearizing Eq. 6.65

about θ = 0, as in the Marko-Siggia model. However, the Marko-Siggia model does

not take into account statistically unlikely large fluctuations. In the 3-dimensional

case, large fluctuations are insignificant, but in 2 dimensions there is the possibility

of the polymer forming a complete loop. Such loops are unstable in 3 dimensions
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(the polymer can come out of the plane, converting the loop into a twist), but are

stable in two dimensions. The equation describing the shape of a loop is very similar

to that of a kink in a nematic field (Eq. 6.17):

θ(s) = 4 cot−1 exp (−s/s0)) , (6.66)

where s0 ≡
√

K/A is the characteristic size of the loop. The energy of a loop is

Ul = 8
√
AK. (6.67)

At finite temperature there is the possibility of nucleating loop-antiloop pairs, with

a density proportional to e−Ul/kBT . Figure 6.9 illustrates the birth of a loop-antiloop

pair. Loops may play an important role in chemical reactivity or bond breakage

because of their high curvature relative to the rest of the polymer.

The loop gas is subtly different from the kink gas. There are actually four topo-

logically distinct loops, provided that the polymer remains in the plane, has finite

curvature everywhere along its length, and maintains fixed orientations at its end-

points. The four fundamental loops are illustrated in Figure 6.10. I have named these

four loops 1, −1, i, and −i, to suggest an analogy to the complex plane. The 1 and

−1 may annihilate each other, as may the i and −i, but there is no cross-reactivity

(check this with a piece of string!). Combinations of real and imaginary loops lead to

more complex twists of the polymer. The topological state of a polymer is described

by an ordered pair of integers (x, y), where x is the number of real loops, and y is the

number of imaginary loops. Clearly, joining segments of polymer in the states (x1, y1)

and (x2, y2) leads to a state (x1 +x2, y1 + y2). 2-dimensional loops on a polymer form

a group isomorphic to (Z2; +).

For a given two-dimensional contour of a polymer, is there a simple way to obtain
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Figure 6.9: Birth of a loop-antiloop pair in a 2-dimensional polymer. The segment
of polymer between the loops rotates through 360◦. Once the loop and antiloop are
separated, they act essentially as free particles that may diffuse along the polymer
backbone.
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Figure 6.10: The loopy group. Loops form a group isomorphic to (Z2; +), i.e. the
set of all ordered pairs of integers (x, y), with the operation of addition. The iden-
tity is a straight line, each loop has an inverse which annihilates it, and addition is
implemented by concatenating segments of polymer. The four basic elements, de-
noted 1,−1, i,−i may be combined to make more complicated loops. The state of
the polymer, characterized by its loop index (x, y), is a topological invariant, pro-
vided that the polymer remains in the plane, has finite curvature, and the tangent
vectors of the endpoints remain fixed. Reflection about the horizontal implements
(x, y) → (−x,−y). Reflection about the vertical implements (x, y) → (−y,−x).
Rotation by 180◦ implements (x, y) → (y, x).
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its (x, y) state? Figure 6.11 illustrates such a procedure. If one starts on the left of the

polymer and walks along, there are four types of intersections that may appear. The

piece of polymer that one is walking along always points to the right. The intersecting

strand may point up or down, and pass over or under. By walking along a contour

one may classify each intersection, and at the end tally up the state of the polymer.

The loop-group does not describe all possible topologies for the polymer because it

misses knots that would remain if the polymer were allowed to come out of the plane,

as in Figure 6.11 c. An interesting question to which I do not have the answer is,

for a given 2-dimensional contour of a polymer, is there a simple way to determine

whether it is in the loop group (i.e. would it be topologically straight if it were allowed

to come out of the plane)? This is a problem for future pondering.
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Figure 6.11: Classification of 2-dimensional contours of a polymer. a) Each type of
intersection corresponds to a particular type of loop. b) Any contour may be classified
by its (x, y) index. c) Knotted conformations are not in the loop group. Is there a
simple way to identify knotted conformations?



Appendix A

Symmetries of the GRFs

This appendix is on the symmetry properties of the generalized response functions.

The symmetry properties of the two-time correlation functions, R+− and R++, have

been exhaustively studied in the context of linear response theory. The principle

symmetries are given by the Kramers-Kronig (K-K) relations and the fluctuation-

dissipation theorem (FDT). Our goal in this section is to extend these results to the

GRFs. The conditions available to us are: causality, time-translation invariance, and

a density matrix in initial thermal equilibrium.

A.1 Causality and time-translation invariance

Toll showed that the conditions of causality and time-translation invariance are suffi-

cient to establish the Kramers-Kronig (K-K) relations between the real and the imag-

inary parts of the susceptibility, R+− [184]. In recent years there has been interest

in deriving K-K relations for nonlinear response functions, R+−...−. Shortly after the

first observation of optical harmonic generation, Kogan sought to generalize the K-K

152
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relations to nonlinear response, within a specific model of the matter [104]. Scandolo

and Bassani recently developed model-independent K-K relations for the nonlinear

response functions relying only on causality and time-translation invariance [164, 10].

We show that a variant of their result applies to GRFs.

Causality requires that the force must precede the response, so

R+...+−...−(ta, . . . , tc, tn, . . . , t1) = 0 if max(tn, . . . , t1) > max(ta, . . . , tc), (A.1)

where ta, . . . , tc are the measurement times and tn, . . . , t1 are the interaction times.

Eq. A.1 is easily verified from the definition of the GRFs (Eqs. 1.34 and 1.35): for

max(tn, . . . , t1) > max(ta, . . . , tc), the T operator guarantees that the leftmost super-

operator is a (−), in which case the trace vanishes (Eq. 1.16b).

Time-translation invariance allows us to add a constant to all arguments of the

GRF without affecting its value 1:

R(ta, . . . , tc, tn, . . . , t1) = R(ta + τ, . . . , tc + τ, tn + τ, . . . , t1 + τ). (A.2)

This symmetry only applies to a system initially in a steady state, for which H0−ρ0 =

0. The most typical steady state is that of thermal equilibrium, but in open systems

nonequilibrium steady states may also occur.

To express Eqs. A.1 and A.2 in the frequency domain, it is convenient to define a

Green function G(ta, . . . , tc, tn, . . . , t1) ≡ R(−ta, . . . ,−tc,−tn, . . . ,−t1). Defining the

latest measurement time, tm ≡ max(ta, . . . , tc), we change variables to τε ≡ tm − tε.

With this new notation, the nth order response of a multitime correlation function is

〈T q+(ta) . . . q+(tc)〉(n) =

∫

dτn · · ·
∫

dτ1G(τa, . . . , τc, τn, . . . , τ1)f(tm−τn) . . . f(tm−τ1),

(A.3)

1Henceforth we omit the + . . .+− . . .− superscript on the GRFs wherever doing so will not cause
confusion.
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which in the frequency domain becomes

〈q̃+(ωa) . . . q̃+(ωc)〉(n) = (2π)n

∫

dωn · · ·
∫

dω1G̃(−ωa, . . . ,−ωc, ωn, . . . , ω1)

×f̃ (ωn) . . . f̃(ω1)δ(ωa + . . .+ ωc − ωn − . . .− ω1).(A.4)

To see that the δ-function constraint on the frequencies is a direct consequence of

Eq. A.2, consider an arbitrary time-translation invariant function F (tn, . . . , t1). The

function obeys the identity

n∑

i=1

∂

∂ti
F (tn, . . . , t1) = 0, (A.5)

whence the n-dimensional Fourier transform, F̃ (ωn, . . . , ω1) satisfies the constraint

n∑

i=1

ωi = 0, (A.6)

which implies that the sum of the output frequencies of a GRF must equal the sum

of the input frequencies. For the special case of a single output frequency (i.e. the

nonlinear response), this result is well known. For the case of fluctuations of the

initial state, Eq. A.6 implies that the sum of the fluctuation frequencies must equal

zero. The reality of the response further requires that G̃(ωa, . . . , ωc, ωn, . . . , ω1) =

G̃(−ωa, . . . ,−ωc,−ωn, . . . ,−ω1)
∗.

To obtain generalized K-K relations, we apply the Titchmarsh theorem, which

states:

If G̃(ω) is square integrable over the real ω-axis, then any one of the following

implies the other two:

1. The Fourier transform G(τ) is 0 for τ < 0.

2. Replacing ω by z = x+ iy, the function G̃(z) is analytic in the complex plane z

for y > 0 and approaches G̃(x) almost everywhere as y → 0.



155

3. G̃(ω) and G̃(ω′) are related by the Hilbert transform

G̃(ω) =
1

πi
P
∫ ∞

−∞

G̃(ω′)

ω′ − ω
dω′. (A.7)

The function G(τa, . . . , τc, τn, . . . , τ1) satisfies requirement 1 in each of its argu-

ments τn, . . . , τ1 (causality constrains the interaction times, but not the measurement

times). Therefore condition 3 applies to each of the input frequency arguments of G̃.

This result is a generalization of the K-K relations to the GRFs.

A.2 Initial thermal equilibrium

Callen and Welton [28] and Kubo [106] derived a relation between the linear response

function, R+−, and the ground state fluctuations, R++. This fluctuation-dissipation

theorem (FDT) is a special case of the Kubo-Martin-Schwinger (KMS) condition for

multitime correlation functions of systems initially in thermal equilibrium [106, 126].

Bernard and Callen tried to extend the FDT to the nonlinear response functions, but

were stymied by the complexity of the expressions in Hilbert space [15]. They obtained

results for the second order response, but no higher. A number of other workers have

also addressed this problem, encountering similar difficulties [56, 179, 35]. Lévy and

Ogielski claimed that there does not exist a generalization of the FDT to nonlinear

response [154], but in 2002 Wang and Heinz proposed just such a generalization [191].

In the following we discuss the relations among the GRFs of the same order (e.g.

R++++, R+++−, R++−−, and, R+−−−). While we do not establish explicit formulas

connecting these quantities, we suggest that they all contain the same information.

The density matrix of a system in thermal equilibrium is given by

ρ0 =
exp(−βH0)

Tr{exp(−βH0)}
. (A.8)
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The KMS condition arises because the inverse temperature in Eq. A.8 acts on the

density matrix in the same way as an imaginary time. For any two Hilbert space op-

erators, Â(ta) and B̂(tb) in the Heisenberg picture, we have the following identity [60]:

〈

Â(ta)B̂(tb)
〉

0
= Tr{Â(ta)B̂(tb)ρ0}

= Tr{Â(ta)e
i

~
H0tbBe−

i

~
H0tbe−βH0}/Tr{exp(−βH0)}

= Tr{Â(ta)e
−βH0e

i

~
H0(tb−i~β)Be−

i

~
H0(tb−i~β)}/Tr{exp(−βH0)}

= Tr{Â(ta)ρ0B̂(tb − i~β)}

=
〈

B̂(tb − i~β)Â(ta)
〉

0
. (A.9)

The translation by imaginary time −i~β can be implemented by multiplying by

e−i~β∂/∂tb , so we have the KMS condition

〈

Â(ta)B̂(tb)
〉

0
= e−i~β∂/∂tb

〈

B̂(tb)Â(ta)
〉

0
(A.10)

Converting to the frequency domain transforms ∂/∂tb → −iωb, so Eq. A.10 becomes

〈

Ã(ωa)B̃(ωb)
〉

0
= e−~ωbβ

〈

B̃(ωb)Ã(ωa)
〉

0
. (A.11)

By Eq. A.6, ωb = −ωa, so

〈

Ã(ω)B̃(−ω)
〉

0
= e~ωβ

〈

B̃(−ω)Ã(ω)
〉

0
. (A.12)

Eq. A.12 immediately leads to a statement of the fluctuation dissipation theorem,

〈

{Ã(ω), B̃(−ω)}+

〉

0
= coth

(
~ωβ

2

)〈

[Ã(ω), B̃(−ω)]
〉

0
. (A.13)
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Generalizing Eq. A.11 to a product of n operators, we get [80]

〈

B̃n(ωn) . . . B̃2(ω2)B̃1(ω1)
〉

0
= e−~βω1

〈

B̃1(ω1)B̃n(ωn) . . . B̃2(ω2)
〉

0

= e−~β(ω1+ω2)
〈

B̃2(ω2)B̃1(ω1)B̃n(ωn) . . . B̃3(ω3)
〉

0

= . . .

= e~βωn

〈

B̃n−1(ωn−1) . . . B̃1(ω1)B̃n(ωn)
〉

0
, (A.14)

where we used Eq. A.6 in the last line.

Now we recast the KMS condition in the language of superoperators. Con-

sider the products of superoperators
〈

B̂2+(t2)B̂1−(t1)
〉

0
and

〈

B̂2+(t2)B̂1+(t1)
〉

0
. In

Hilbert space the former is
〈

B̂2(t2)B̂1(t1)
〉

0
−
〈

B̂1(t1)B̂2(t2)
〉

0
and the latter is

1
2

(〈

B̂2(t2)B̂1(t1)
〉

0
+
〈

B̂1(t1)B̂2(t2)
〉

0

)

. Comparison with Eq. A.13 shows that

〈

B̃2+(ω)B̃1+(−ω)
〉

=
1

2
coth

(
~ωβ

2

)〈

B̃2+(ω)B̃1−(−ω)
〉

. (A.15)

We can replace B̂2+ by an arbitrary sequence of ± superoperators. Consider the se-

quences
〈

B̂n+B̂(n−1)νn−1
. . . B̂2ν2

B̂1−

〉

0
and

〈

B̂n+B̂(n−1)νn−1
. . . B̂2ν2

B̂1+

〉

0
, where νε =

+,− (the first superoperator must be a (+) or the trace vanishes; all other superop-

erators may be (+) or (−); the sequences differ in whether the last superoperator is a

(+) or a (−)). Converting just the rightmost superoperator to Hilbert space in each

expression, the former becomes
〈

B̂n+B̂(n−1)± . . . B̂2±B̂1

〉

0
−
〈

B̂1B̂n+B̂(n−1)± . . . B̂2±

〉

0

and the latter becomes 1
2

(〈

B̂n+B̂(n−1)± . . . B̂2±B̂1

〉

0
+
〈

B̂1B̂n+B̂(n−1)± . . . B̂2±

〉

0

)

.

Thus we have the frequency domain relation

〈

B̃n+B̃(n−1)νn−1 . . . B̃2ν2
B̃1−

〉

0
=

1

2
coth

(
~ω1β

2

)〈

B̃n+B̃(n−1)νn−1
. . . B̃2ν2

B̃1+

〉

0
.

(A.16)

Eq. A.16 cannot be used on its own to relate the various GRFs because the multitime

correlation functions in Eq. A.16 are not time-ordered. However, the time-ordered
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expressions can be stitched together by combining multitime correlation functions of

superoperators multiplied by by appropriate unit-step functions. These step-functions

considerably complicate the expressions, but do not change the information content.

We can say that all generalized response functions of the same order (e.g. R+−−,

R++−, and R+++) have the same information content.

The condition of time-reversal symmetry has recently been considered for the non-

linear response functions [186], but this condition seems not to apply to some systems

(e.g. magnetic materials, p-n junctions), and thus is not considered here. Certain sym-

metries of the Hamiltonian may place additional constraints on the GRFs [203]. For

example, in a system with a center of inversion symmetry the only nonzero GRFs are

those where the number of (+) terms and the number of (−) terms have the same

parity.
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