
Abstract
We trap and probe individual fluorescent particles in solution 

using an improved anti-Brownian electrokinetic (ABEL) trap. 
Traditional single-molecule immobilization techniques include 
surface attachment and laser tweezers; the former technique 
often disrupts fragile biochemical systems, while the latter 
requires that molecules be conjugated to large beads. The 
ABEL trap circumvents these issues by tracking the motion of 
a particle via fluorescence, and applying electrokinetic 
feedback forces to cancel its Brownian motion.
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Key Challenges
• Accurate tracking of dim, quickly moving objects in real time
• Microfluidics for applying feedback voltages
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Instrument Design

• Tunable supercontinuum laser plus acousto-optic tunable filter 
(AOTF) can illuminate with any color of visible light

• Electro-optic deflectors (EODs) scan a confocal spot at up to 100 
kHz frame rate

• Avalanche photodiode (APD) detects single photons
• Field-programmable gate array (FPGA) tracks particle position 

and generates feedback voltages
• Microfluidic sample cell carries voltages to sample
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Future Plans
• Improve microfluidic sample cell engineering
• Trap doubly labeled dsDNA of varying size
• Study cyclization of short circular DNAs
• Collaborations welcome!
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Scan Pattern
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a. Scan pattern showing order of traversal

b. Time-averaged recorded illumination pattern

c. Reducing distance between spots improves 
flatness of illumination pattern

d. Feedback voltages generated as a function of 
particle position
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Fundamental Limits and Scaling

• Stokes-Einstein relation (η = viscosity, a = radius)

• Effective time step (λ = photon count rate)

• Diffusive step size (2D)

• Timescale of photon utility (w = beam waist)

• Real-time localization accuracy (2D)
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ABEL Trap Concept

• Use fluorescence microscopy to track Brownian motion in 
real time

• Apply feedback voltages to induce electrokinetic drift that 
cancels the measured Brownian motion

• ABEL trapping scales more favorably for small particles 
than laser tweezers
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Photon-by-Photon Particle Tracking

• Each detected photon is localized to a laser spot
• Localized photons are used to construct an estimate of the 

particle’s position (the “Measurement Estimate”)
• Previous estimates are propagated according to the system 

dynamics (diffusion and response to applied voltages) to 
construct a prediction of where the particle should be

• The measurement estimate is incorporated into this 
prediction to construct a new estimate
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A Simple Ultra-Thin Flow Cell

50-800 nm deposited SiO2

Fused silica coverslip

Fused silica lens
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