Spectral Shift FRET Studies of Photosensitive Membrane Proteins

Halil Bayraktar¹, Alexander P. Fields², Joel Kralj³, John L. Spudich³, Kenneth J. Rothschild⁴, Adam E. Cohen¹

¹Department of Chemistry and Chemical Biology, Harvard University
²Biophysics Program, Harvard University
³Department of Biochemistry and Chemical Biology, Harvard University of Texas Medical School
⁴Department of Physics, Boston University
bayrakt@fas.harvard.edu

Abstract

We present a highly sensitive method of studying the dynamics of photosensitive membrane proteins by using Spectral Shift FRET. In normal FRET, the rate of energy transfer depends on the spatial separation of donor and acceptor. In Spectral Shift FRET, the rate of energy transfer depends on the spectral separation of a donor and an environmentally sensitive acceptor. Our method is particularly suited to macromolecules that contain an endogenous chromophore that undergoes a chromatic shift, in which case only a single fluorescent label is required. The label serves as a fluorescence donor, and the endogenous chromophore serves as an environmentally sensitive quencher.

Proteorhodopsin (PR) and Sensory Rhodopsin II (SRII), found in marine plankton, are light-sensitive membrane proteins that convert light into chemical energy by creating a motive force across the membrane. The retinal chromophore undergoes notable spectral shifts during the photocycle. Alexa dyes were incorporated into PR and SRII. The photocycle was initiated by a flash at the activation wavelength, and the ensuing dynamics were probed by measuring the fluorescence quantum yield of the Alexa dyes. 100 nm size vesicles containing a few copies of membrane proteins were sufficient to monitor the dynamics of the photocycle, thereby providing a highly sensitive method to monitor bacterial rhodopsins. The technique of Spectral Shift FRET provides an important new tool for studies of photosensitive proteins.

Energy Conversion in Oceans: Photocycle of PR in Proteobacteria

Future work

2. Studying the fluctuations in the dynamics of photosensitive proteins by using Anti-Brownian Electrokinetic Trap (ABET trap).

Acknowledgments

The research is supported by Harvard University Research Funds.