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Prof. Adam Cohen  Nan Yang 

 

Molecules in sculpted fields: magnetic field effects and multipole transitions 

 

Abstract 

 This thesis describes work related to the theme of sculpted electromagnetic fields 

- engineered fields with particular spatial patterns - and their interactions with molecules. 

We are motivated by the following questions: what are ways of detecting spatial patterns 

in electromagnetic fields? What are possible applications of spatially engineered fields? 

Are there molecular transitions that are dark to plane waves but that can be probed by 

sculpted fields? 

 The first part of this thesis is in the area of magnetic field effects in chemistry.  

We focus on magnetic field modulated fluorescence, which provides a convenient 

method for imaging magnetic field strength. We proposed and demonstrated a 

fluorescence technique that allows imaging through strongly scattering media. We 

achieve this by exploiting the fact that most materials do not scatter magnetic field. This 

allows us to project a magnetic field pattern beyond the scattering surface. The magnetic 

field dependent fluorescence then allows us to map out the object of interest. We 

constructed a setup that demonstrates 2D imaging using this technique. We synthesized 

new molecular systems to enhance the sensitivity to magnetic field.  We characterized 

and compared these molecules with steady state fluorescence spectroscopy, transient 
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fluorescence and transient absorption measurements. The results reveal patterns that point 

to directions for engineering chemical systems to further enhance their magnetic field 

sensing properties. 

 The second portion of this thesis is a theoretical study of the molecular multipole 

transitions and their couplings to local electromagnetic quantities. Using a semiclassical 

approach, we performed a multipole expansion of molecular transitions driven by 

monochromatic radiation. We derived the local electromagnetic quantities that couple to 

different multipole transitions and observables such as circular dichroism and magnetic 

circular dichroism. It was observed that certain transitions are dark to plane waves, but 

could be probed by simple spatial arrangements such as superpositions of plane waves.  

Experiments for their detection are also proposed. 
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Introduction 
 

 One of the principle research interests of our lab is to study the interactions of 

molecules with sculpted electromagnetic (EM) fields [1]. By sculpted fields we mean EM 

fields with engineered spatial patterns that are not found in plane waves or uniform DC 

fields, as are employed in common spectroscopic methods. As developments in ultrafast 

techniques continue to push temporal control of EM fields into new frontiers, spatially 

engineered fields provide important complementary information. Eventually, spatial and 

temporal sculpting are both required to achieve the ultimate goal of complete control of 

electromagnetic fields. During my PhD, I worked on two areas related to the theme of 

engineered EM fields: magnetic field effect on chemistry and molecular multipole 

transitions. 

 Chapter 1 provides the background information of magnetic field effect (MFE) on 

chemistry, relevant works from literature, and the basic underlying mechanism. Chapter 2 

presents basic MFE measurements that we performed to characterize the intermolecular 

electron transfer systems. Chapter 3 describes a potential application of MFE that we 

have proposed and demonstrated. It is a technique for imaging through strongly scattering 

media using the chemical system mentioned in Chapter 2. Chapter 4 describes our effort 

on improving the chemical system by covalently linking the electron transfer partners. 

Thereby create a system that experience intramolecular rather than intermolecular 

electron transfer. This significantly enhanced the properties of the system with respect to 

MFE. Chapter 5 presents characterization and comparison of the molecules that we 

synthesized. The patterns revealed point to potential directions for engineering 
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magnetically sensitive chemical systems to enhance their properties. Chapter 6 discusses 

the local geometry of electromagnetic fields and its role in molecular multipole 

transitions. We derive the local EM quantities that couple to different multipole 

transitions and other observables such as circular dichroism and magnetic circular 

dichroism. We show that some of these transitions do not interact with plane waves, but 

could be probed by simple spatial arrangements such as superpositions of plane waves. 

Experiments for their detection are also proposed. Below is a list of publications related 

to my work described in this thesis: 

Yang, N., Tang, Y. & Cohen, A. E. Spectroscopy in sculpted fields. Nano Today 4, 269-

279 (2009).  

Yang, N. & Cohen, A. E. Optical imaging through scattering media via magnetically 

modulated fluorescence. Opt. Express 18, 25461 (2010).  

Yang, N. Y. & Cohen, A. E. Local geometry of electromagnetic fields and its role in 

molecular multipole transitions. J. Phys. Chem. B 115, 5304-5311 (2011).  

Lee, H., Yang, N. & Cohen, A. E. Mapping nanomagnetic fields using a radical pair 

reaction. Nano Lett. 11, 5367-5372 (2011).  
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Chapter 1 Background and Theory 

 

1.1  Magnetic field effects on chemical reactions 

 The effects of magnetic fields on chemical reactions are well documented with 

experimental observations in many different systems[2-5]. The area has attracted 

significant research effort over the past few decades, yet still contains many interesting, 

unexplored territories. It was initially surprising that ordinary magnetic fields (<1 T) 

would have any effects on chemical processes. Early theoretical argument based on 

thermodynamics suggested that the rate of chemical reactions involving paramagnetic 

states would be affected by magnetic fields. However, the interaction energy of an 

electron spin with a relatively large external field of 1 T is about 60 μeV, compared to 

thermal energy of 25 meV at room temperature. Therefore, without going to low 

temperature, magnetic effects on thermoequilibrium and reaction rates are negligible 

even at high fields.  

 The discovery of the radical pair mechanism (RPM) in the late 1960’s proved to 

be a successful theory for explaining the many experiment observations of magnetic field 

effects (MFE) in chemistry. The theory made the crucial connection between electron 

spin and chemical pathways via the Pauli exclusion principle. External magnetic fields 

affect the evolution of the spin states, which subsequently determine the chemical 

pathways available to the system. In section 1.2, we will examine the RPM in detail as it 

is applied to the chemical systems investigated in this thesis.  

 



 

4 

 

1.2  The radical pair mechanism 

 The radical pair mechanism was independently proposed by Kaptein and 

Oosterhoff[6,7] and by Closs[8] in 1969. We present the theory as it is applied to electron 

transfer systems, as those are what I have studied experimentally.  

 Let us first consider the energy diagram of a single molecule as shown in Fig. 1.1. 

The lower and upper bars represent the highest occupied molecular orbital (HOMO) and 

lowest unoccupied molecular orbital (LUMO), respectively. The arrows indicate 

electrons that are initially at the HOMO. The up and down direction of the arrows 

symbolize electron spins. For a pair of electrons, arrows in the opposite direction 

symbolize a singlet state, and arrows in the same direction symbolize a triplet state. By 

Pauli exclusion principle, electrons at the same orbital must be in the singlet state.  The 

molecule is usually in its electronic ground states S0, as shown at the bottom of the figure. 

When the molecule is excited by absorbing a photon, one electron goes into a higher 

energy level. Spin-flipping transitions are forbidden due to selection rules, therefore the 

Intersystem 
Crossing 

(ISC) 

 

Fig. 1.1 The relevant states in molecular photochemistry 
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spin configuration is preserved and remains singlet. So we have a singlet excited state S1 

at a higher energy to S0. Magnetic interactions can flip or rephase the electron spins and 

lead to interconversion between the singlet excited and triplet excited state T1. The 

interconversion is referred to as intersystem crossing (ISC). Electrons are fermions, so 

their overall wave function is antisymmetric. The overall wave function is a direct 

product of the spin wave function and the spatial wave function. Singlet and triplet states 

have antisymmetric and symmetric spin wave functions, respectively. Therefore they 

have symmetric and antisymmetric spatial wave functions, respectively. Antisymmetric 

spatial wave function means that the two electrons have zero probability density to have 

the same spatial coordinates. Therefore the Coulomb energy is lower for the triplet states, 

as indicated by the level of the T1 in Fig. 1.1. This is the exchange interaction and can be 

in general written as: 

 )SS( 21  JH J . (1.1) 

The eigenstates of (S1·S2) are singlet and triplet states. Now we consider two molecules, a 

system consisting of an electron donor and acceptor. The Hamiltonian is  

 
2
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The terms in the Hamiltonian are: HJ is the exchange interaction, HB is the Zeeman 

interaction with the external field, and Hhf is the hyperfine interaction between the 

electron spin and nuclear spins.  
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 When the distance separating the radical pair is small, HJ dominates, and the 

splitting between singlet and triplet states prevents any intersystem crossing. If the 

radicals move away from each other by diffusion or other process, then HJ decreases 

rapidly with distance, and becomes negligible when the radicals are sufficiently far apart 

(>1 nm). It is also worth noting that spin-orbit interactions, while responsible for 

intersystem crossing in molecules in excited states, are similarly negligible at large 

radical separation[9].  

 When the radical pair is well-separated, singlet and triplet states become 

degenerate. The electron spins experience different local hyperfine fields from 

magnetically active nuclei such as 
1
H, 

13
C, 

14
N. The difference in x and y components of 

the local hyperfine fields lead to spin flipping and intersystem crossing between S0 and 

T±1. Difference in z components leads to rephasing and intersystem crossing between S0 

S T0T+ T-
S T0T+ T-

S
T0

T+

T-

S
T0

T+

T-

Fig. 1.2 a) Intersystem crossing in absence of external field b) intersystem 

crossing in presence of external field 

a) 

b) 
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and T0. The system starts in the singlet state and ISC to the three triplet states are equally 

efficient as all states are degenerate, as shown in Fig. 1.2a.  

 

Now consider the effect of applied external field through the Zeeman term. In 

general the g factors of the electrons could be different, but the difference is usually small 

and can be neglected when field is low.  As shown in Fig. 1.2b. Now the degeneracy of 

the states is lifted, with T±1 split away. ISC to the T±1 states is effectively suppressed 

when the splitting is greater than the difference in hyperfine fields experienced by the two 

electrons. The hyperfine field is typically of the order of 10 G. Although this is still large 

compared to the Earth’s magnetic field of about 0.5 G, it is sufficiently low to be easily 

Fig. 1.3 The evolution of radical pairs created by photo-initiated 

electron transfer, the applied field affects the ISC step 
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arranged via electromagnet or permanent magnets. This is why relatively weak magnetic 

fields can influence chemical processes: the field does not have to compete with thermal 

energy, but only with the hyperfine field.  

 The process as applied to an electron transfer system is illustrated in Fig. 1.3. 

Photoexcitation of the acceptor promotes one electron to the higher energy level. When 

the donor and the excited acceptor are in proximity of each other, an electron transfer 

from the donor to the acceptor can take place. This creates a pair of charged radicals, and 

the spin of this radical pair is initially in the singlet state. When the donor and acceptor 

diffuse apart from each other so that the exchange integral J becomes negligible, 

hyperfine interaction dominates and induces ISC. Then there are two pathways. If ISC 

does not occur, then the system remains in the singlet state, and upon reencountering, the 

system can form an excited complex or exciplex[10]. The exciplex can decay radiatively 

to the singlet ground state and give off fluorescence, which is the signal we detect in 

many of our experiments.  

The system could also undergo ISC, so a triplet radical pair is formed. At 

reencountering, Pauli exclusion principle forbids relaxation back to the ground state, so 

no fluorescence is produced. Often there is an electron back transfer to the acceptor, 

creating triplet acceptor species. The triplet species can decay non-radiatively or go 

through triplet-triplet annihilation when two of the molecules encounter, and give off 

delayed fluorescence [11]. The intensity of the delayed fluorescence is much weaker 

compared to the direct exciplex fluorescence for dilute solutions, as its intensity is 

proportion to the concentration squared.   
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Consider the experiment of measuring the fluorescence intensity as a function of 

applied magnetic field.  We would observe an increase of fluorescence with increasing 

field strength, because magnetic field suppresses ISC, so the radical pair is more likely to 

be in the singlet state and form exciplex which then decays radiatively. This is the most 

common mechanism for MFE when the field is not very strong (< 1 T). It is referred to as 

the hyperfine mechanism, as the external field is competing against the nuclear hyperfine 

fields and suppressing the hyperfine fields’ ability to induce ISC. 

 For samples that do not have nuclear polarization or particular molecular 

orientation, the MFE only depends on the magnitude of the magnetic field, and not on the 

direction. This means that the effect on unoriented molecules cannot function as a 

compass. We will discuss more about this in section 1.4 in relation to hypothesis of 

magnetocompass in organisms.  

We should note that ISC is not a one-way conversion from the singlet to the 

triplet state. Rather, it is an interconversion process with triplet states also going into the 

singlet state. Since the nuclear spin relaxation is generally much slower than the 

electronic processes, we assume the hyperfine field is constant on the time scale of 

interest. Then the long-time steady state singlet ratios are 1/3 and 1/2 in the no field and 

high field limits, respectively. The result in the no field limit may seem surprising given 

that there are three triplet states and one singlet state, but the result is not 1/4. An intuitive 

explanation for why this is the case can be made by considering a single electron spin 

precessing in some random, constant magnetic field. Even though there are infinitely 

many different trajectories, all of them go through the original orientation. So the spin is 

more likely to be in its original orientation if we average over time compared to random 



 

10 

 

distribution of the spin direction. This geometrical argument explains experiments on 

muon spin relaxation. If we assume an ensemble of spin-1/2 particles polarized in one 

direction , and each is coupled to a bath of  interactions approximated as random static 

magnetic fields from a 3D Gaussian distribution, then the decay of the polarization can be 

calculated exactly and it approaches 1/3 in the long time limit.  This result is known as 

the Kubo-Toyabe function[12,13]. Similarly, for two spins, they are more likely to be in 

the singlet state that they started in. If they each couple to random fields from a 3D 

Gaussian distribution, then the singlet ratio approaches 1/3 in the long time limit[14].  

 Thus an external field that is much larger than the hyperfine fields increase the 

long time singlet ratio by 50%. However, the magnitude of MFE observed experimentally 

is determined by many other factors such as singlet decay rate and diffusion coefficient. 

Usually the decay rate is on a similar time scale as the rate of ISC, so the MFE is 

sensitive also to the rate of ISC and not just the long time limit singlet ratio.  

One may ask whether static magnetic field can enhance ISC rather than 

suppressing it. It was proposed by our lab that high magnetic field gradient can achieve 

this goal. The idea is that large change of magnetic field over a short distance makes the 

electrons of the radical pair experience different local fields. The gradient then acts 

effectively like the hyperfine field and induce ISC. High field gradients can be found near 

magnetic nanoparticles or at boundaries of magnetic domains. The details of the theory 

can be found in ref. [14].  

 At high field, static magnetic field can also enhance ISC if the electrons have 

different g-factors, because they then precess at different rates. This is referred to as the 

Δg mechanism. The hyperfine and Δg mechanism can occur in the same system. In which 
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case one would observe increase in fluorescence with increasing field at low field. Then 

the hyperfine mechanism saturates and fluorescence is constant with increasing field 

strength. As the field increases further, Δg mechanism become important and 

fluorescence decreases[4,5]. 

In certain systems, the singlet and triplet states may not be completely degenerate 

if there is residual exchange interaction. External field can bring T- to become degenerate 

with the singlet state. Therefore ISC is initially increased with increasing field until the 

Zeeman splitting matches exchange splitting. Then ISC decreases as the field splits T- 

further away from S0. This is referred to as the level crossing mechanism[2]. 

The hyperfine mechanism predicts increasing fluorescence intensity with 

increasing field. However, for certain systems, for very low field strength, the 

fluorescence initially drops with increasing field due to higher rate of ISC. This is known 

as low field effect (LFE) [15,16]. It can be understood intuitively by considering a single 

electron spin precessing about its local hyperfine field. It traces out a circle on the Bloch 

sphere. The application of a weak field sets the nuclear spins in a slow precession about 

the external field. So the electron spin, as it continues to precess about the hyperfine field 

due to the nuclear spins, traces out a greater area on the Bloch sphere. The effect of this 

on the electron pair is that they deviate more from the initial singlet state, and ISC is 

enhanced. This effect generally requires longer time between electron transfer and 

recombination, because nuclear spins precess much more slowly compared to electron 

spin. 

 This section has presented the basics of the radical pair mechanism. There are 

many extensions and variants of the basic mechanism for explaining experimental results 
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in many different systems. We refer to the many references that explain those theories in 

detail[2,3,17,18]. In the next section, we discuss the experimental observations using 

various techniques. 

 

1.3  Observations of magnetic field effects (MFE) and related phenomena 

 There are many acronyms in describing magnetic effects in chemistry. They have 

been identified as they initially appear in the text. We collect these acronyms in table 1.1 

for reference. The possibility of magnetic effects in biology has attracted much attention 

and effort. We briefly review the ideas and studies in that field in section 1.4.  

Table 1.1 List of acronyms related to magnetic field effects 

Acronym Stands for 

MFE Magnetic field effect 

ISC Intersystem crossing 

LFE Low field effect 

MIE Magnetic isotope effect 

CIDNP Chemically induced dynamic nuclear polarization 

CIDEP Chemically induced dynamic electron polarization 

ODMR Optically detected magnetic resonance 

RYDMR Reaction yield detected magnetic resonance 

ODESR Optically detected electron spin resonance 
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1.3.1 Magnetic field modulated fluorescence 

 Systems that give off fluorescence are commonly studied because it provides a simple 

detection method. Our experiments also focus on fluorescent systems. The measurements 

will be presented in section 2. Here we briefly review some relevant experimental studies in 

the literature. Relatively few chemical systems display magnetic field effects because they 

need to be in the right range of parameter space, which include parameters such as radiative 

and non-radiative decay rates, diffusion coefficient, hyperfine field strength, and exchange 

integral.  Molecules that are commonly used as electron acceptors include pyrene[19] and 

anthracene[20]. Typical electron donors include dimethylaniline (DMA) and indole 

molecules[21]. At relatively low field, hyperfine mechanism is the dominant mechanism, 

therefore external field increases fluorescence intensity. Measuring fluorescence intensity as 

a function of field strength yields information about the hyperfine fields of the system. There 

are some other important considerations which are also interesting research directions. 

 MFE requires a delicate balance of time scale, especially that of diffusion and ISC. 

Diffusion coefficient can be affected by viscosity and dielectric constant of the solvents or 

external factors such as temperature. The dielectric constant matters because the radical pair 

is charged, and the two radicals experience Coulomb attraction. High dielectric constant 

effectively shields the attractive force so the pair is more likely to diffuse apart. Low 

dielectric constant solvent leads to a stronger Coulomb force so the pair is more likely to stay 

close together. The requirement for MFE is that the pair first needs to diffuse away 

sufficiently far so exchange integral becomes small, and then they need to come back 

together to recombine. Therefore, it is not surprising that measurements of magnitude of 

MFE as a function of dielectric constant shows a peak at some optimal dielectric 
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constant[22,23]. Usually the dielectric constant is scanned through a range by mixing two 

solvents in different proportions. The timescale of ISC can also be tuned by substituting in 

isotopes to change the hyperfine fields. A common strategy is to substitute hydrogen with 

deuterium to reduce hyperfine field[24]. 

 In the description above and in section 1.2, we described the case in which the 

reencountering radical pair is the original pair that experienced electron transfer. Thus their 

spin states are correlated and subject to the effect of magnetic field. This process is referred 

to as geminate recombination. The recombination could also happen between a pair that had 

different electron transfer partners. In that case, the spins states are not initially correlated 

and magnetic field has no effect. This is referred to as homogenous recombination.  Since 

fluorescence from homogeneous recombination is not sensitive to magnetic field, it 

contributes to the background. There are different ways of reducing homogeneous 

recombination. One is to covalently link the donor and acceptor and ensure geminate 

recombination. We have also synthesized new molecules for this purpose.  The synthesis and 

measurement results are presented in chapter 4 and 5, respectively. Different chained systems 

have been synthesized to study the effects of chain length, temperature, solvent, and high 

magnetic field[25-29]. An alternative that does not require chemical synthesis is to use 

micelles. In each micelle the number of donors and acceptors is small, and the ratio of 

geminate recombination is increased. Micelles also provide different environments compared 

to homogenous solvents[30-32]. 

 In section 1.2 we distinguished between direct exciplex fluorescence and delayed 

fluorescence. The studies mentioned above are focused on direct fluorescence. Delayed 

fluorescence can also be measured with pulsed excitation source and time-resolved detection. 
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Since delayed fluorescence is from the triplet species, magnetic field decreases the intensity 

of delayed fluorescence[19,33]. The relative effect also tends to be larger because delayed 

fluorescence is proportional to the concentration squared. There are many other studies of 

magnetic field modulated fluorescence, for which we refer the reader to the references and 

the review papers.   

 

1.3.2 Magnetic isotope effect (MIE), chemically induced dynamic nuclear 

polarization (CIDNP) and chemically induced dynamic electron polarization 

(CIDEP) 

 Different isotopes have different nuclear magnetic moments and produce different 

hyperfine fields. Therefore the ratio of singlet to triplet states can be altered by the presence 

of different isotopes. This is a new mechanism for nuclear isotope effects, because it is the 

nuclear magnetic moment rather than the mass difference that matters. We describe an 

experiment in 1976 by Buchachenko et al. to illustrate MIE[34]. Dibenzyl ketone (DBK) in 

solution mixture of benzene and hexane undergoes photodecomposition reaction. The excited 

DBK dissociates and initially form a triplet radical pair. The system can go through ISC and 

be in the singlet state, and then recombine into the starting molecule of DBK. If ISC does not 

happen, then the radical pair dissociates and decays via other pathways that do not lead to the 

formation of DBK. 
12

C does not have a magnetic moment and does not contribute to the 

hyperfine field. 
13

C is magnetically active, so its magnetic moment enhances ISC and leads to 

more DBK formation. Therefore we expect the DBK molecules that survive the 

decomposition process are more likely to have begun with the 
13

C isotope. It was observed 

that 
13

C concentration in DBK increases as the reaction proceeds, with enrichment of up to 
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17.6%. The application of an external field suppresses ISC and decreases the enrichment as 

expected. Later experiments also show that MIE of decomposition of DBK can be greatly 

enhanced when the radical pair is generated in micelles[35].  

 CIDNP refers to the phenomena that the NMR spectra of certain reacting systems show 

enhanced emission and absorption, due to non-Boltzmann distribution of nuclear spins. The 

phenomenon was originally observed by Bargon et al.[36] and Ward and Lawler[37]. The 

RPM can provide a basic explanation of CIDNP in similar fashion to MIE. Consider radical 

pair with nuclear states denoted by N1 and N2,   which differ by spin 1 on one of the nuclei. 

The NMR signal from that nucleus would show enhanced emission or absorption if the ratio 

of N1 to N2 does not follow the Boltzmann distribution in the products of the radical pair. 

Since the nuclear spin states determine the probability of products formation, different 

products from the reaction pathways of the radical pair have different ratios of N1 to N2 that 

are non-Boltzmann, leading to CIDNP signals. A key application of this phenomenon is 

photo-CIDNP applied to proteins. The experiment involves adding flavin dyes to proteins in 

solution. Upon photoexciation, the flavin dyes can form radical pairs with certain amino acid 

side chains, such as tyrosine, histidine, and tryptophan. The CIDNP effect enhances the 

NMR lines belonging to these amino acids. This process only happens when these residues 

are at the surface and exposed to solution. Therefore this technique provides a way to 

distinguish bwteen residues at the surface and residues buries inside the protein, thus the 

surface structure of the proteins can be probed [38,39].   

 CIDEP is the analogous phenomena for electrons. It can also arise from the RPM, but 

the underlying mechanism is different from CIDNP. Consider the density matrix of radical 

pair expressed in the basis of singlet and triplet states. With sufficiently high external field B 
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the T±1 states are split away and only the S and T0 states are relevant. We shall consider the 

system that starts with fixed population in the S and T0 states, and no off-diagonal 

coherences. The spin states then evolve first with the radical pair well separated and 

exchange interaction is negligible, then as the radical get close to each other, the spin 

Hamiltonian is dominated by the exchange interaction.  In this situation the total polarization 

of the two electrons is not changed with the spin evolution, and CIDEP signal is only 

observed if the electrons have different g values [40]. The observable is the polarization of 

the two individual electrons, given by: 

 )()( ttP TSST   . (1.3) 

Now first consider the spin Hamiltonian when the radical pair is far: 
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This is just the combination of the Zeeman and hyperfine terms. It maps the population 

)()( tt TTSS    onto the coherence )()( tt STST   . The Hamiltonian when the radical pair 

is close together is dominated by the exchange interaction: 

 )SS( 21  JH J . (1.5) 

 It rephases the coherence, so the actions of the two Hamiltonians can be summarized as: 

 )()()()()()( tt
J

tt
Q

tt STSTSTSTTTSS  





 . (1.6) 

 We can see that the combined effect of applying the two Hamiltonians in sequence is to 

map the original population difference onto the observable which is the individual electron 
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spin polarization[40]. We refer to these references[41,42] for more details of the theory and 

experimental observations of CIDNP and CIDEP. 

 

1.3.3 Optically detected magnetic resonance (ODMR) and reaction-yield detected 

magnetic resonance (RYDMR) 

 Besides static field, one may also ask whether weak oscillating fields can affect chemical 

reactions.  This is particularly relevant considering that we are exposed to electromagnetic 

radiation from electronic devices on a daily basis. Consider the energy level diagram in Fig. 

2b).  The T±1 states are split away and inaccessible when the splitting is large compared to 

the local effective magnetic field. But oscillating field on resonance with the splitting drive 

transitions to the T±1 states and ISC can be enhanced, as shown in fig. 1.4, where the blue 

arrows illustrate the effect of the oscillating field. 

 In a fluorescent reaction with static external field, the application of resonant oscillating 

field would enhance ISC, and decrease fluorescence. If the oscillating field is continuously 

applied, and the DC field is swept, then a fluorescence drop would be observed as the DC 

field goes through the resonance. This is the phenomenon of optically detected magnetic 

resonance (ODMR), or also referred to as optically detected ESR (ODESR)[43,44]. Though 

S 

T 0 

T + 

T - 

S 

T 0 

T + 

T - 

Fig. 1.4 Intersystem crossing in presence of external DC magnetic field 

and on-resonance oscillating field in an orthogonal direction 
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optical detection provides the best sensitivity, the reaction does not need to be fluorescent, in 

which case the reaction yield can be monitored to reveal the electron spin resonance[45]. 

This class of phenomena is referred to as reaction yield detect magnetic resonance 

(RYDMR).  

 In order to observe RYDMR, the magnitude of the oscillating field B1 needs to be 

sufficiently large to rotate the electron spins within the lifetime of the radical pair. For a 

lifetime of 100 ns, this translates into a B1 of the order of 10 G. As B1 further increases to the 

order of 100 G, ISC is suppressed by the oscillating field due to spin locking effects [46].  

 

1.3.4 Spin catalysis  

 In normal magnetic field effects, the inhomogenous hyperfine fields induce ISC.  

Hyperfine fields are generally not very strong, on the order of 10 G. If other forms of 

inhomogenous interaction can be applied, then ISC can be enhanced or suppressed. One 

possibility is using high magnetic field gradients such that the members of the radical pair 

experience sufficiently different fields even with nanometer separation[14].  

 The interaction does not need to be magnetic, but just needs to have the form of: 

H = a S · F, where F is a vector quantity that couples to the electron spins. The exchange 

interaction is exactly of this form. However, as discussed in section 1.2, the exchange 

interaction between two electron spins suppress intersystem crossing because the singlet and 

triplet states are the eigenstates of that interaction. For just two spin interacting, the effective 

fields each spin experience is due to the other spin, and cannot induce ISC. But if there is a 

third spin in the vicinity of the radical pair, its exchange interaction with the two spins could 

be very different as HJ is very sensitive to distance. Therefore, a three spin system can exhibit 
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spin catalysis phenomena, where one spin acts as a catalyst for the other electron pair through 

the exchange interaction[47]. A first experimental demonstration was made when it was 

observed that the presence of TEMPO, a stable nitroxide radical, increased the probability of 

recombination of a radical pair that starts in the triplet state [48]. A related phenomenon is 

the inter-conversion between para- and ortho-hydrogen catalyzed by paramagnetic 

ions[49,50]. 

 

1.4  Magnetic field effects in biology 

 An important motivation for the study of magnetic effects in chemistry is to address the 

question whether ordinary magnetic fields influence biochemistry, and human physiology in 

particular. One area that has received much attention is magnetoreception for navigation in 

animals. It is known that many species, birds in particular, can sense the Earth’s magnetic 

field for navigation purposes[51].  

 There are several hypotheses for the underlying mechanism, including detection by 

electromagnetic induction and biogenic magnetite based force sensing[52,53]. Chemical 

magnetorepection based on the RPM is of particular interest to us. The basic idea is that birds 

maintains magnetically sensitive chemical reactions, and infer direction with respect to the 

Earth’s field by monitoring the reaction product[54]. Significant difficulties for this 

mechanism include the low strength of the Earth’s magnetic field of about 0.5 G, and the fact 

that the MFE based on RPM is only sensitive to the magnitude and not the direction of the 

external field. The latter implies that at least one radical has to be immobilized, so that the 

system has an anisotropic response to the external field[55]. It has been demonstrated in vitro 
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under low temperature conditions that chemical systems can respond to magnetic field of the 

order of 0.5 G[56]. But no such system has been identified that functions under ambient 

conditions. 

 There are also many experimental evidences that favor a chemical magnetoreceptor over 

the competing hypotheses. Experiments show that the avian compass is dependent on the 

presence of light and its wavelength [57,58], and it is sensitive to the inclination with respect 

to the field lines, but not the polarity[59]. In other word, the avian compass would be 

insensitive to a flipping between the north and south magnetic pole, but could detect the 

angle with respect to the north-south axis. Furthermore, oscillating magnetic fields, which 

can affect chemical reaction through the mechanism of RYDMR, have been shown to 

interfere with the function of magnetoreception in birds[60].  

These observations from behavioral studies are consistent with photo-initiated, 

oriented chemical systems based on the RPM, and are difficult to reconcile with the other 

theories. The main difficulty in further establishing the RPM hypothesis is to identify the 

biochemical process that is responsible for magnetoreception, which has remained elusive. 

One leading candidate is the protein cryptochrome which is found in the retina of migratory 

birds, and form photoexcited radical pairs[61-63]. However, there are also recent studies on 

neuronal response that offers evidence in favor of biogenic magnetite mechanism, and 

against the RPM hypothesis[64]. 

 An important area where magnetic field effect due to the RPM is observed is in 

photosynthetic systems. It was shown that the hyperfine mechanism is responsible for 

magnetic field dependent decay of excited states in the photochemical reaction centers of 

Rhodopseudomonas sphaeroide [65,66]. Another example of magnetic influence on 
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biochemistry is the demonstration of MIE on ATP synthesis in vitro. The study compared the 

Phosphoglycerate kinase-directed ADP phosphorylation rates with the presence of 
25

Mg
2+

 

and 
24

Mg
2+

 ions, and found that ATP production is 2.6 times higher with 
25

Mg
2+

[67].  

 There are many reports in the literature on evidence for biological effects due to weak 

magnetic field. The significant interest in this field is motivated by the question whether the 

electromagnetic fields that we are exposed to on a daily basis affect our health.  However, 

there are relatively few attempts to independently replicate the experiments reported, and 

often such effort found that the original results are not reproducible [68]. Furthermore, the 

studies on biological effects cannot resolve the question without also identifying plausible 

mechanisms and the associated bio-molecules. This has been the important issue in this field 

and has attracted much effort over the past decade. The experiments in refs [56] and [67] do 

identify the underlying mechanisms, but they were carried out in non-physiological 

conditions, and the effects are unlikely to persist in vivo.  

The RPM hypothesis for avian compass is currently a leading candidate for potential 

manifestation of MFE in biology, as it has gathered significant evidence in its favor [69]. But 

the identification of the bio-molecules and processes involved are stilled required in order to 

prove the theory.
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Ch 2. Magnetic field effects on fluorescence  

2.1 The pyrene / DMA system  

 One electron transfer system that we have worked with extensively is the pyrene / 

dimethylaniline (DMA) system. The chemical diagrams of the molecules are shown in 

Fig. 2.1. Pyrene and DMA function as electron acceptor and donor, respectively.  

 Pyrene is the principle absorber of UV light. Its absorption spectrum is shown in 

Fig. 2.2. The absorption peaks are located at 241, 273, and 335 nm. We excite the 

molecule at around 335 nm, where the molar extinction is approximately 54000 cm
-

1
/M[70]. Pyrene is fluorescent and its excited state lifetime is on the order of hundreds of 

nanoseconds [71]. If the excited pyrene molecule encounters a DMA molecule before it 

has relaxed, then an electron transfer can take place from the DMA to the pyrene 

molecule, creating a radical pair that is initially in the singlet state. The radical pair can 

form a fluorescent exciplex if the spins remain in the singlet state. The exciplex 

fluorescence is broad, structureless, and red-shifted with respect to the prompt 

Fig. 2.1 Molecular diagrams of pyrene and DMA 



 

24 

 

fluorescence of pyrene. Therefore it can be spectrally distinguished from the prompt 

fluorescence directly coming from pyrene molecules in the excited state. Monitoring the 

exciplex fluorescence allows optical detection of MFE based on the radical pair 

mechanism (RPM) that was described in section 1.2.  

 Fig. 2.3 shows the fluorescence emission spectrum of pyrene at a fixed 

concentration, and DMF at varying concentrations. The blue curve is the emission 

spectrum of pyrene as a standalone fluorophore. As the concentration of DMA increases, 

the fluorescence of pyrene is quenched, and the intensity of the broad exciplex 

fluorescence increases.  

 There have been many studies on MFE of the pyrene / DMA and related electron 

transfer systems[22,23,30,72]. The theoretical description of the MFE observed in the 

system based on the hyperfine mechanism has been worked out in detail[73,74]. The 

hyperfine fields on the pyrene molecule come from the 12 spin-½ protons, with hyperfine 

constants in the range of 2-5 G each. The 
14

N contribute significantly to the hyperfine 
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Fig. 2.2 Absorption spectrum of pyrene in cyclohexane.  
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field of the DMA, as it has spin 1, and hyperfine constant of approximately 12 G. The 11 

protons on DMA have hyperfine constants in the range of 6-12 G each[74]. Fig. 2.4 

adapted from Ref. [74] shows an illustration of the hyperfine fields on the pyrene / DMA 

pair. Each proton nuclear magnetic moment is represented by a small arrow, which point 

in random directions. The nitrogen magnetic moment is represented by a longer arrow as 

it is a spin-1 nucleus and has relatively large hyperfine constant. The total hyperfine field 

on each molecule is the vector sum of all the individual moments, and they are 

approximately 10 G and 30 G on pyrene and DMA, respectively. In absence of external 

field, the electrons on each molecule precess about the total hyperfine field. The 

difference between the hyperfine fields on pyrene and DMA then induces ISC.  

 

Fig. 2.3 Fluorescence intensity of pyrene at fixed concentration of 1×10
-4

 M, 

and varying concentration of DMA. Solvent is DMF. 
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2.2 Steady state measurements 

 To measure MFE on fluorescence we need to monitor the exciplex fluorescence 

intensity as varying magnetic fields are applied. The magnetic field is applied by an 

electromagnet (GMW 5403) driven by a bipolar operational power supply with voltage 

programming (Kepco BOP 20-20 M). The sample is a solution of pyrene (1×10
-4

 M) and 

DMA (5×10
-2

 M) in a solvent mixture consisted of 75% THF and 25% DMF by volume. 

The sample is placed in a cuvette with septum screw-cap (Starna GL14-S). The sample is 

continuously degassed by bubbling with N2 to purge oxygen, which quenches the 

radicals. The fluorescence is collected from the bottom of the cuvette by an optical fiber, 

and the light is directed through an emission filter (470 LP) onto an avalanche photodiode 

(APD, Perkin-Elmer SPCM-AQRH). The sample is excited by a 100 W mercury lamp 

with a 350 nm short pass filter (Asahi XUS0350). The mercury line at 334 nm coincides 

with the absorption peak of pyrene. All chemicals are obtained from Sigma-Aldrich with 

Fig. 2.4 Schematic illustration of the hyperfine fields on pyrene and DMA. 

From Ref. {{783 Schulten, K. 1978}}. 
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the highest purity available and used without further purification. We use a data 

acquisition card (National instrument DAQ6259) to record the photon counts from the 

APD, and generate voltage signals to control the magnetic field. As the magnetic field is 

changed by the applied voltage, we record the actual field near the sample with a linear 

Hall-effect sensor (Alegro A1301). 

 The MFE measurement is shown in Fig. 2.5. The MFE on the y-axis is defined as 

the change in fluorescence normalized by the fluorescence when the applied field is zero. 

The curve observed can be explained by the hyperfine mechanism. The applied field lifts 

the degeneracy between the S0 and T±1 states. ISC is then inhibited and exciplex 

fluorescence is increased. The change in fluorescence is most rapid at relatively low 

fields when the external field competes against the hyperfine fields. As the applied field 
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Fig. 2.5 MFE measurement of pyrene / DMA in a solvent mixture of 75% THF 

and 25% DMF 
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far exceeds the hyperfine fields, ISC to T±1 states is completely turned off, and further 

increase in applied field has no significant effect. The MFE is also sensitive only to the 

strength of the external field and not its polarity, as expected. The width of the MFE 

curve yields information on the strength of the hyperfine fields. We measure a FWHM of 

180 G. This is larger than the value of 120 G obtained from theory and experiments in 

other solvents [19]. This could be due to solvent effects or different impurities in the 

sample.  

   As described in section 1.3.1, dielectric constant and viscosity of the solvent have 

a significant impact on the MFE curve. Since the radical pair is charged, dielectric 

constant ε has a particularly large effect on the diffusion process that is critical for MFE. 

In binary solvent mixtures, as the composition of the mixture is tuned, there is generally a 

particular composition that yields the optimal dielectric constant that maximizes MFE. At 

Fig. 2.6 MFE measurement of pyrene / DMA in a solvent mixture of 50% 

Benzene and 50% DMSO 
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lower ε, the Coulomb force is less shielded and it is difficult for the pair to diffuse 

sufficiently far apart for the exchange interaction to be negligible. If ε is too high, then 

the pair is less likely to reencounter after diffusing apart. The largest MFE for freely 

diffusing, intermolecular electron transfer system that we are aware of is pyrene / DMA 

in a solvent mixture of Benzene and DMSO as reported in Ref. [75]. The result measured 

with our setup is shown in Fig. 2.6. 

 The MFE in Benzene / DMSO can be as large as 18%. The FWHM of 150 G is 

also different from the value in THF / DMF. We have also experimented with other 

solvents. The alcohol solvents such as methanol and ethanol generally show much 

smaller MFE, on the order of 2-3%. Non-polar solvent such as cyclohexane do not have 

MFE. One promising mixture we identified that was not reported in the literature is 82% 

THF and 18% DMSO, which has a MFE of 12%, which is smaller than the benzene / 

DMSO mixture, but is less hazardous to use.  

 In general it is observed that solvent mixtures show larger MFE compared to 

solvents of a single component. It is suggested that the reason is the formation of micro-

heterogeneous structures in solvent mixtures whose components have very different 

properties. Such structure has similar effects to micelles and suppresses homogeneous 

recombination which is insensitive to magnetic field[75].   

 If we use emission filters that pass the direct pyrene fluorescence at wavelength 

shorter than 400 nm, then no MFE is detected. This is because the fluorescence is from 

excited pyrene molecules that are not quenched by DMA. Therefore no radical pair is 

formed and its intensity is not affected by the magnetic field. However, in other systems, 

a MFE on the excited fluorophore is also observed. The magnitude is small compared to 
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the MFE on exciplex fluorescence. Since the external field only affects radical pairs, this 

demonstrates that there are interconversion between the excited fluorophore, exciplex, 

and radical pair [76].  

 

2.3 Delayed fluorescence measurements 

 The measurements in section 2.2 are performed at steady state conditions. The 

sample is continuously excited and the DC fluorescence intensity is recorded. We refer to 

the result as MFE on prompt fluorescence to distinguish it from delayed fluorescence that 

originates from the triplet states. As described in section 1.2, if the radical pair is in the 

triplet state at reencountering, then an electron back transfer can still take place to create 

triplet species, in this case triplet pyrene molecules. The triplet molecules can then be 

quenched non-radiatively by oxygen or other radicals, or encounter another triplet 

molecule and undergo triplet-triplet annihilation according to: 
3
Py + 

3
Py  => 

1
Py + 

1
Py*, 

where the number 1 and 3 denote spin multiplicity and * represents an excited molecule. 

Essentially if the overall spin multiplicity of the two encountering triplet molecules is 

singlet, then they can become a singlet ground and a singlet excited molecule[33]. The 

energy of the triplet molecule is less than the singlet excited molecule because of the 

exchange interaction between the two valence electrons. Therefore the requirement for 

triplet-triplet annihilation is that the energy of the triplet is more than half of the singlet 

excited molecule. The resulting 
1
Py* can then decay radiatively, which is delayed 

fluorescence. 
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 There are several key differences between delayed and prompt fluorescence. 

Since the source of delayed fluorescence is the triplet state, it is reduced by the external 

field. The triplet states are readily quenched by oxygen, therefore the observation of 
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Fig. 2.7 a) MFE on delayed fluorescence of pyrene and DMA, in 82% THF and 

18% DMSO b) MFE on delayed fluorescence of pyrene and DMA, in methanol  

b) 



 

32 

 

delayed fluorescence depends on thoroughly purging the solution with inert gas. The 

magnitude of the MFE on delayed fluorescence is substantially larger than on prompt 

fluorescence, as the delayed fluorescence is proportional to the concentration of triplet 

species squared. 

 We adapt the setup as described in section 2.2. The excitation source is changed 

to a pulsed N2 laser (VSL-337), with repetition rate of 20 Hz, pulse width of 4 ns, and 

pulse energy of 120 μJ. We gate the APD and count the photons in time bins of 2 μs.  

The measurements are shown in Fig 2.7. The solvent in a) is a mixture of THF / DMSO. 

We observe the reduction of fluorescence as expected. After the first 50 μs, the reduction 

is about 30%, which is much larger than the 12% MFE on prompt fluorescence. It is 

interesting to observe that for the first 10 μs the external magnetic field has enhanced 

delayed fluorescence. This is likely due to the tail end of the prompt exciplex 
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Fig. 2.8 MFE on delay fluorescence of pyrene and DMA as a function of 

applied field, the solvent is 82% THF and 18% DMSO 
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fluorescence, which is increased by the applied field and is much more intense than the 

delayed fluorescence under the experimental conditions. Fig. 2.7b) shows the result with 

solvent being methanol. There the fluorescence is reduced throughout the time observed 

as the lifetime of the exciplex is tuned by using different solvents.  

 In Fig. 2.8 we show the MFE on delayed fluorescence as a function of applied 

field. The relative change on the y-axis is defined as change in integrated delayed 

fluorescence after 50 μs normalized by the integrated delayed fluorescence after 50 μs 

when applied field is zero. The blue dots are the data, and the green interpolation curve is 

added as a visual aid. The curve has the features of what would be expected of the 

hyperfine mechanism except that the fluorescence is reduced. For freely diffusing 

systems, the relative MFE on delayed fluorescence is in general larger than that of 

prompt fluorescence. We have also experimented with variants of this system, using 

anthracene or phenanthrene as the electron acceptor, and 4,4‘ - bis(dimethylamino) 

diphenylmethane (DMDPM) as the electron donor. Pyrene and DMA is preferred for its 

large MFE and robustness, and is the system we use for works described in the following 

chapters.  
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2.4 The BBOT / TPD system 

a) 

b) 

Fig. 2.9 a) Molecular diagrams of BBOT and TPD b) The fluorescence emission 

spectrum of BBOT only, TPD only, and the molecules in a 1:1 ratio, all samples 

are immobilized in a PMMA matrix, the red curve with both of the molecules 

show broad, structureless exciplex fluorescence centered near 550 nm 
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 MFE on fluorescence provides a nice way of imaging the strength of the local 

magnetic field. The spatial resolution is set by the diffraction limit. One way to improve 

the spatial resolution is to use a chemical system that is in solid form and can be 

immobilized. Then if the fluorescence is collected from a thin layer of the chemicals, the 

spatial resolution in z is set by the layer thickness. Hu et. al. identified such an electron 

transfer system[77]. The molecules are 2,5- bis(5-tert-butyl-2-benzoxazolyl)-thiophene 

(BBOT) and N,N-diphenyl-N,N0-bis(3-methylphenyl)-[1,10-biphenyl] -4,40-diamine 

(TPD). Their molecular diagrams and exciplex formation are shown in Fig. 2.9. The MFE 

is observed when they are immobilized in a PMMA matrix at 1:1 ratio. We reproduced 

the result using our setup by replacing the cuvette with a glass slide with the sample on 

top. PMMA and the molecules are dissolved in chloroform and spin coated on the glass 

slide. We use 550/50 nm emission filter to capture the exciplex fluorescence.  
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Fig. 2.10 MFE on fluorescence of the BBOT / TPD system.  The molecules are 

immobilized in a PMMA matrix in 1:1 ratio 
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 The MFE curve is shown in Fig. 2.10. The result is much noisier because of the 

low photon counts and the resulting large shot noise. It demonstrates that the MFE of the 

system is governed by the hyperfine mechanism. This is quite surprising for an 

immobilized system, since without diffusion, the exchange interaction remains significant 

and prevents intersystem crossing. In that case, observation of the level-crossing 

mechanism is also likely. One possibility is the transfer of excitation along the molecules, 

both of which have a chain structure linking similar parts together. Therefore it is 

possible for electron transfer to occur at one part of the molecule, and the excitation is 

transferred to another part slightly away from the other molecule, reducing the exchange 

interaction between the radical pair and allows the hyperfine mechanism to function. 
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Ch 3. Magnetofluorescence imaging (MFI) 

 

3.1 Moltivation 

Magnetic field modulated fluorescence allows an optical readout of the magnetic 

field strength. Unlike optical fields, static magnetic fields are not scattered by most 

materials. Based on this property, we proposed and demonstrated magnetofluorescence 

imaging (MFI), a method of imaging through scattering media via MFE on fluorescence. 

This chapter is based on Ref. [78] 

We reasoned that an inhomogeneous magnetic field would lead to a spatially 

varying rate of ISC, and thereby to a spatially varying fluorescence.  In particular, a field 

with a localized null leads to a localized region in which ISC is faster—and the 

fluorescence lower—than in its surroundings.  We scan this field null through a sample 

chamber containing a non-magnetic object immersed in a magnetofluorescent fluid.  We 

record the total fluorescence intensity as a function of the location of the field null.  The 

pattern of fluorescence intensity indicates the shape of the object.  Due to the small 

fractional changes in fluorescence expected during the measurement, we dither the 

location of the magnetic null at a high frequency and use lock-in detection of the 

fluorescence.  

 

3.2 Experimental apparatus 

 Fig. 3.1a) shows a diagram of the apparatus.  Four permanent dipole magnets 

(K&J Magnetics DX0X0-N52) produce an octupole field in which B = 0 along the entire 
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z-axis.  In the x-y plane, this arrangement creates a localized magnetic null at the origin.  

The magnets are cylinders with a diameter of 25.4 mm, a length of 25.4 mm, and a 

surface field of 6619 G.  Opposing faces are 36 mm apart.  Dithering coils are mounted 
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Fig. 3.1 Apparatus for magnetofluorescence imaging.  a) The sample is immersed in a 

solution of pyrene/DMA (yellow disk) and placed in an octupole magnet.  UV 

illumination impinges from above and fluorescence is sent via 10 mm acrylic light guide 

to a photomultiplier (PMT).  Bias coils dither the location of the magnetic null at 870 Hz 

for lock-in detection.  A mechanical x-y stage scans the magnet assembly relative to the 

sample.  b) Simulation of the magnetic field strength due to the permanent magnets in the 

plane z = 0.  c) Predicted point spread function based on field profile from (b), and the 

MFE on fluorescence from Fig.  1b. d) Direct optical imaging of the point spread function.  

The light guide and PMT were replaced by a CCD camera.  The sample chamber was 

filled with pyrene/DMA and the exciplex fluorescence was imaged onto the camera.  The 

octupole magnets were scanned across a 7 x 7 grid.  The dark spots correspond to the 

locations of the null in the magnetic field.  The point spread function has a FWHM of 0.94 

mm. 

 



 

39 

 

concentrically with two of the magnets.  Each coil is wound from 61 m of 18 gauge 

magnet wire.  The inner and outer diameters are 4 cm and 8 cm, respectively.  The coils 

are connected in series with a 4 F capacitor for resonant driving.  The octupole magnet 

and dithering coils are mounted on a Ludl precision scanning stage.  The sample 

chamber, excitation and detection pathways are mounted to the optical table and do not 

move during the experiment.  The magnet assembly is scanned relative to the sample. 

The sample chamber is constructed from a ½” diameter black anodized aluminum 

tube (Thorlabs SM05L05) with top and bottom surfaces composed of optical windows 

(Anchor Optics AX45637).  A size 12 Kalrez o-ring (VWR 14212-020) is placed 

between the windows to seal the fluid in the chamber and to set the separation of the 

windows to be 2 mm.  The object to be imaged is immersed in a solution of pyrene/DMA 

contained in a sample chamber, which is mounted between the magnets.  Ground glass 

windows (Edmund Optics NT62-616) are placed within the aluminum tube, 2 cm above 

and below the sample chamber.  These windows scatter light strongly, and thereby 

prevent conventional optical imaging of the sample. 

A 100 W mercury lamp with a 350 nm short pass filter (Asahi XUS0350) 

illuminates the top of the sample with 12 mW of UV light.  The mercury line at 334 nm 

coincides with the absorption peak of pyrene.  An emission filter (Chroma D435/90x) 

below the sample blocks transmitted excitation light and passes exciplex fluorescence to 

a 10 mm diameter acrylic light guide (Anchor optics AX27644), which carries the 

fluorescence to a photomultiplier tube (Hamamatsu H10492-013).   
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To acquire an image, the x-y translation stage moves the magnet assembly 

relative to the sample in a raster pattern, causing the dark spot to move across the sample.  

To enhance the signal-to-noise ratio we use a lock-in detection scheme.  A function 

generator connects to an audio amplifier, which drives the dithering coils at 870 Hz and 1 

A, r.m.s., corresponding to an AC field amplitude of 80 G at the magnetic null (see 

Supplementary Movie 3).  Drive currents are chosen so the amplitude of the dithering is 

approximately half the width of the dark spot.  The total fluorescence intensity develops a 

component at the modulation frequency only when the dithering carries the dark spot 

across the boundary of an object.  The signal from the PMT is fed into a lock-in amplifier 

(Princeton Applied Research 5210), and the signal driving the dithering magnets is used 

as a reference.  We use a Labview program to control a data acquisition card (National 

instrument DAQ6259). 

We typically perform two x-y scans, with the sample rotated 90º about the z axis 

between each.  The two outputs of the lock-in, acquired from corresponding points in the 

sample, are combined to associate a vector with each point.  This vector points along the 

surface-normal of the object in the x-y plane. 

 We simulated the field of the permanent magnets by numerical integration of 

Maxwell’s Equations in Matlab (Fig. 3.1b).  The field distribution was combined with the 

measured MFE for pyrene/DMA to yield an estimated point spread function (Fig. 3.1c).  

The result agrees well with the point spread function measured by acquiring a 

fluorescence image of the sample chamber containing only pyrene/DMA solution (Fig. 

3.1d).  The dark spots in Fig. 3.2d) indicate the locations of the null in the field as the 

magnets are moved relative to the sample. 
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The symmetry of the octupole arrangement ensures that the magnetic null exists 

along the entire z-axis.  The point spread function broadens away from the plane z = 0, 

but this broadening is negligible over the 2mm vertical dimension of the sample chamber. 

 

3.3 Result 

 MFI is insensitive to the path the light takes entering or exiting the sample, 

because the detection volume is determined entirely by the magnetic field.  Thus one may 

acquire optical images in the presence of arbitrarily strong optical scattering.  This 

property of MFI is dramatically demonstrated by imaging through our sample chamber, 

(a) (c) (b) 

2 mm 2 mm 

Fig. 3.2 Imaging through a scattering medium.  a) Sample cell.  A glass object to be 

imaged (top) is placed in a chamber with a solution of pyrene/DMA (middle).  The bottom 

and top of the chamber are blocked by ground glass plates so the object is obscured 

(bottom).  b) Magnetofluorescence images of the sample hidden inside the chamber.  The 

vectors represent the local gradient of the MFE, which is only large at the solution / object 

interface.  The quiver plot shows the boundaries of the object in (a).  Inset: projected 

shadow image.  c) Quiver plot showing the boundaries of a single glass rod.  Inset: 

projected shadow image. 
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in which the only optical access is through ground glass plates.  MFI penetrates the walls 

of the chamber, yielding the images shown in Fig. 3.2.   

The samples imaged in Fig. 3.2 are made by cutting a 1 mm thick glass slide into 

strips.  A dilute solution of sodium silicate is used to bind the strips together.  We first 

acquire an MFI image of the sample chamber containing only a solution of pyrene/DMA.  

Then we acquire an image with the glass sample.  The difference between these images 

shows the boundaries of the sample.  By projecting the surface-normal vectors onto a 

single axis (45
○
 from vertical, in this case), shadow images of the object are created.  We 

emphasize that these images could not have been acquired by conventional imaging due 

to the strong scattering of light entering and exiting the sample. 

 

3.4 Discussion 

 The spatial resolution of MFI is given by 0/ Bx  , where σ is the width of 

the MFE (in G) and B0 is the gradient in the field strength at the magnetic null (in 

G/mm).  In our device, σ = 180 G and B0 = 260 G/mm, leading to a theoretical 

resolution of 0.7 mm.  Our experimentally determined resolution is 0.9 mm.  Steeper 

gradients or narrower magnetic response curves lead to higher resolution.  A steeper 

gradient is obtained by either increasing the strength of the octupole magnets, or by 

decreasing their size and separation.  Material limitations determine the maximum 

strength of the octupole permanent magnets, so miniaturizing the octupole magnets 

provides the best route to higher field gradients.  Strong permanent magnets may be 
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fabricated down to the sub-micron scale, suggesting that the present system could be 

miniaturized by at least four orders of magnitude. 

 The number of resolvable spots along each axis is 
2

0BL
N


 , where L is the 

distance between the pole pieces.  The factor of 2 arises from the constraint that the 

sample must be no larger than L/2 along any dimension, to avoid collisions with the 

permanent magnets during scanning.  Scaling the system to smaller size while keeping 

the magnetization fixed does not affect the number of resolvable spots because LB0 

remains constant.  The present system generates images with 13 x 13 resolvable points.  

To increase the number of resolvable points one must increase the sensitivity of the MFE.   

Molecules with smaller hyperfine fields respond to smaller magnetic fields, and 

thus enable higher resolution imaging.  Deuterated molecules have significantly reduced 

hyperfine fields and have been demonstrated to show greater sensitivity to magnetic 

fields [16]. Other electron donor/acceptor systems show magnetic sensitivity to fields as 

small as 0.4 G [56].  An outstanding chemical challenge is to design fluorescent systems 

with greater magnetic field sensitivity.  Ideally such systems would also be photostable 

and water soluble. 

A further challenge in MFI is to detect the small fluctuations in the fluorescence 

at the magnetic null, above the larger unmodulated fluorescence from the remainder of 

the sample.  In our experiment, the maximum AC component of the PMT voltage is VAC  

= 100 μV, while the DC background is VDC = 500 mV.  To achieve a shot noise-limited 

SNR of 10, one must acquire at least nphot = 100(VDC/VAC)
2
 fluorescence photons at each 

pixel.  This requirement can lead to unreasonably long image acquisition times.  The 
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background increases as pixDC NV  , where Npix is the number of pixels, while the 

maximum AC signal is independent of Npix.  The acquisition time per pixel increases as 

2

pixN , and the time per image increases as 
3

pixN .  Thus shot noise ultimately limits the 

number of pixels in an MFI image.  To improve the signal-to-background ratio, one 

would like to increase the magnitude of the MFE.  For our present system the MFE is 

about 10%.  As we will describe in the following two chapters, covalently linking the 

donor and acceptor pair can dramatically increase MFE, to as much as 130%. 

The signal-to-background ratio can also be improved by using a system in which 

the magnetic field suppresses fluorescence.  For instance, the delayed fluorescence—in 

contrast to the prompt fluorescence used here—of pyrene/DMA is suppressed by a 

magnetic field [72].  Delayed fluorescence arises from radical pairs that undergo 

intersystem crossing into the triplet state.  Electron back transfer leaves pyrene in an 

excited triplet state.  When two triplet pyrenes collide, one pyrene can end up in an 

excited singlet state, which then emits delayed fluorescence.  The timescale of delayed 

fluorescence is set by diffusional encounter of pairs of triplet pyrene, and is much longer 

than the prompt fluorescence lifetime of pyrene of ~100 ns.  The intensity of delayed 

fluorescence is reduced by an external magnetic field.   

The ability of MFI to image inside scattering media may prove useful in 

biomedical imaging, as biological tissues scatter light strongly.  Optical coherence 

tomography, photoacoustic microscopy, optical phase conjugation, and wavefront 

shaping allow imaging through scattering media, but these techniques have depth of 

penetration of 1 mm or less [79-82]. MFI is in principle free from such limits, provided 
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molecules with suitable fluorescence spectra and magnetic sensitivities are identified.  

Furthermore, MFI only senses magnetically sensitive fluorophores, and is thus insensitive 

to crosstalk from other fluorescent compounds.  The spatial resolution of MFI is entirely 

independent of the strength of the optical scattering, provided that a sufficient number of 

fluorescence photons reach the detector.  One can also conceive of applying MFI in a 

semi-infinite medium, in which case fluorescence would be detected in the backscattered 

direction rather than in the forward direction.  
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Ch 4. Synthesis of linked donor-acceptor systems 

 

4.1 Moltivation 

 The ideal system for studying magnetic field effects on fluorescence would have 

the following properties.  

 Large MFE 

 Same donor and acceptor partners with repeated excitations   

 Absorption in the visible 

 Bright and photostable 

 Narrow MFE linewidth  

Among these properties, brightness and photostability are generally intrinsic to the 

molecular systems. Significant improvements need to come from discoveries of new 

molecular systems that both have the right parameters to show MFE and better brightness 

and photostability. Narrow MFE linewidth means the system is more sensitive to the 

gradient of the magnetic field. This is helpful for imaging applications as well as 

oscillating MFE. The MFE linewidth is governed by the effective hyperfine field. 

Systems have been studied that are sensitive to the earth field and have low effective 

hyperfine field, but the experiment requires low temperature [56]. Since the hyperfine 

field is ubiquitous from hydrogen and C13 atoms, and is required for MFE, it is difficult to 

significantly reduce it. 

 On the other hand, improvements on the first three properties can be effectively 

achieved by the strategy of covalently linking the donor and acceptor by a molecular 



 

47 

 

chain. In a system where the donor and acceptor are not chained, once the radical pair is 

formed by electron transfer, the charged donor and acceptor can freely diffuse relative to 

each other. At reencountering, there are two possibilities. The donor / acceptor pair could 

be the original pair that experienced the electron transfer, in which case their starting spin 

state was singlet. If they have remained in the singlet at reencountering, an electron back 

transfer could occur and relax the system back to the ground state. This is referred to as 

geminate recombination, and is sensitive to external magnetic field as described before. 

The other possibility is that the reencountering pair has different partners that they have 

diffused from. In this case their spin states are not correlated. The radical pair has a 1/4 

chance to be in the singlet state and is not sensitive to external magnetic field. 

Combination through this path is called homogeneous recombination. Therefore 

homogeneous recombination contributes a background that is insensitive to magnetic 

perturbation. In unchained systems, this background is significant. Covalently linking the 

donor and acceptor ensures that the vast majority of recombination is geminate, hence 

increase the MFE signal.  

 The fact that electron transfer is intramolecular rather than intermolecular also 

ensures that, with repeated excitations, the donor and acceptor partners remain the same. 

This is useful because the nuclear spin configuration of the pair is preserved. We 

proposed an experiment to take advantage of repeated rounds of excitation and ISC in a 

chained donor-acceptor system. 

The rate of intersystem crossing is a function of nuclear spin configuration which 

determines the hyperfine field. If the hyperfine field experienced by both electrons is 

similar, ΔBhf is small, then the electron spins precess in sync and intersystem crossing is 
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slow.  If the hyperfine fields are very different, ΔBhf is large, then ISC occurs quickly. 

The experiment involves repeatedly exciting the molecules and monitoring the nuclear 

spins states. The timescale of nuclear spin relaxation is typically on the order of 0.1-1 

seconds, which is long compared to the electronic processes. So we can assume that the 

nuclear configurations is essentially the same during the experiment. We expect the pairs 

with small ΔBhf to be more likely to remain in the singlet state, relax back to the singlet 

ground and can be excited again. The pairs with large ΔBhf  are more likely to go into the 

triplet state and do not come back to the singlet ground. Repeated excitation would 

preferentially reduce the population with large ΔBhf, so the pairs that have remained in 

the singlet ground state would have a non-thermal distribution of nuclear states.  

This procedure selects for pairs that have similar hyperfine fields on both the 

donor and acceptor. However, unlike the non-Boltzmann distribution resulting form 

nuclear hyperpolarization, no polarization takes place, which makes monitoring this non-

thermal distribution difficult. This experiment would not work if the donor and acceptor 

are not linked. Then one acceptor has a different partner donor with each excitation. The 

relative nuclear configuration changes each time and the process would not select for 

anything. This proposed experiment illustrates why always having the same donor and 

acceptor pair is a useful property. One way of overcoming the difficulty of detecting the 

non-Boltzmann distribution without polarization is to exploit its effect on ISC and 

fluorescence. Since pairs with similar hyperfine fields are selected for, the rate of ISC in 

the remaining pairs is low compared to a thermal distribution of hyperfine fields. 

Therefore the magnitude of MFE should decrease as this nuclear spin selection process 
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continues. This should be carefully distinguished from potential artifacts such as sample 

degradation.  

 When attaching the donor and acceptor with a molecular chain, the acceptor is 

chemically modified, so we expect its absorption spectrum to shift. Typically the 
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Fig. 4.1 Molecular structures of the three synthesized compounds. 
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acceptors absorb in the UV, so if there is sufficient red shift we can expect systems with 

visible absorption. Therefore, a compound that consists of a donor and an acceptor linked 

by a molecular chain offers many advantages over the freely diffusing systems.

 Different chained systems have been synthesized to study the effects of chain 

length, temperature, solvent, oscillating field, and high magnetic field[25-29,46]. Such 

systems can display MFE as large as 140% compared to about 10% in unchained 

systems[28].  

 

4.2 Synthesis procedure 

 We chose to adapt the synthesis procedure from Cao et. al. [28], because the 

molecule they studied, phenanthrene-(CH2)12-O-(CH2)2-DMA, displays the largest MFE 

on fluorescence. The molecules we synthesized are of the general form acceptor-(CH2)12-

O-(CH2)2-DMA, where the acceptor is phenanthrene, pyrene, or anthracene. The 

molecular structures of the compounds are shown in Fig. 5.1. 

 The synthesis is completed in two parts as illustrated in Fig. 5.2. For the first part, 

2.6 g of 9-bromophenanthrene was added to an anhydrous diethyl ether solution in a flask 

kept in an ice bath. 12 mL of 1.6 M hexane solution of n-butyllithium was added drop 

wise. The mixture was stirred for 4 hrs. 15 g of 1,12-dibromododecane was added as 

once. The mixture was stirred for several minutes, and the flask is placed in a water bath 

at 30°C and fitted with a reflux condenser. The solution is refluxed for 2 hrs. The reaction 

mixture is extracted by diethyl ether. The organic layer is washed by distill water for 

three times, then washed by brine solution, and dried over magnesium sulfate. The 
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diethyl ether is evaporated. The crude reaction product is purified by column 

chromatography on silica, with hexane as the solvent, yielding phenanthrene-12-Br as the 

product of the first part. 

 1 g of NaH (60% oil suspension) was dissolved in 20 mL of N,N-

dimethylacetamide. 1 g of phen-12-Br and 0.5 g of 2-[4-(dimethylamino)phenyl]-ethanol 

were added to the solution and the mixture is stirred for 4 hrs in an ice bath.  The reaction 

mixture is extracted by diethyl ether. The organic layer is washed by distill water for 

three times, then washed by brine solution, and dried over magnesium sulfate. The crude 

reaction product is purified by column chromatography on silica. The solvent used is a 

Fig. 4.2 Synthesis procedure of phenanthrene-(CH2)12-O-(CH2)2-DMA, drawing 

by Vijay Jain. 
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mixture of hexane and ether in 9:1 ratio. The purified product of phen-12-O-2-DMA is 

obtained as a white crystal. 

 Proton NMR (CDCl3, 500 MHz) on the final product is shown in Fig. 5.3. The 

following peaks can be identified: δ=8.76-7.58 (9H on phenanthrene), 7.12-6.74 (4H on 

benzene ring), 3.59-3.42 (4H O-CH2), 3.14-3.08 (2H phen- CH2), 2.92 (6H CH3), 2.84-

2.72 (2H DMA- CH2), 1.84-1.22 (20H protons on the chain). We have also performed 

Fig. 4.3 Proton NMR (CDCl3, 500 MHz) spectrum of the purified product of phen-12-O-

2-DMA. The peak at 7.24 ppm is from impurities of undeuterated chloroform in the 

solvent. 
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mass spec analysis that confirms the elemental composition of the product with error of 

about 1 ppm.  

 Similar procedures are applied to synthesize pyrene and anthracene versions of 

the compounds. The starting materials for those compounds are 1-bromopyrene and 9-

bromoanthracene, respectively. All chemicals for synthesis are from Sigma-Aldrich with 

the highest available purity, and used with no further purification.  

 Sometimes the second reaction failed to produce the desired products, and the 

component containing the acceptor would display broadened NMR peaks. This problem 

is particularly pronounced for anthracene. We found that neutralizing the NaH in the 

mixture with HCl until pH reaches 7 improves the success rate, and have incorporated 

this step into the synthesis protocol.  
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Ch 5. Characterization of linked donor-acceptor systems 

 We make various MFE measurements on the three different chained compounds 

mentioned in chapter 4. The electron donor in all three is N,N-dimethylaniline (DMA). 

The compounds are of the form acceptor-(CH2)12-O-(CH2)2-DMA, where the acceptor is 

phenanthrene, pyrene, or anthracene. In addition to measuring MFE on fluorescence in 

both steady state and time-resolved experiments, we also measured MFE on transient 

absorption due to the triplet states. We find that the magnitude of MFE on singlet 

fluorescence and triplet absorption are negatively correlated. This suggests that the 

difference in MFE among the three molecules can be explained by the different ratios of 

singlet to triplet generated. This also points to potential directions for engineering 

molecules that display particularly large MFE in either fluorescence or transient 

absorption. 

 

5.1 Steady state MFE measurements 

 The steady state MFE curve as a function of magnetic field is measured with the 

setup described in section 2.2. For measurements with varying excitation or emission 

wavelengths, we use a Cary Eclipse spectrophotometer. The sample is held in a 1 cm 

square quartz cuvette. Excitation and emission collection are at the sides of the cuvette in 

directions orthogonal to each other. We apply magnetic field by placing a 1 cm square 

neodymium magnet at the bottom of the cuvette. The surface field of the magnetic is 

about 1000 G. The upper parts of the cuvette is blocked so emission collection only 

comes from the region within 1 cm of the surface of the magnet.  
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 Among the three chained donor-acceptor systems, phenanthrene-12-O-2-DMA 

displays the largest MFE. In fig. 5.1, we compare its MFE signal with the unchained 

pyrene / DMA system. The excitation wavelength is 355 nm. As anticipated, MFE in the 

chained compound is significantly higher. There are two interesting features of the MFE 

curve of the chained compound. The FWHM is about 400 G, which is significantly 

higher than the unchained compound; and the fluorescence level continues to rise even at 

relatively high fields. Both of these features imply large effective hyperfine fields. 

 The fluorescence emission spectra of high applied field vs. no applied field for all 

three molecules are shown in Fig. 5.2. The excitation wavelengths are chosen to be the 

absorption peak of each compound and the solvents are chosen to maximize MFE. The 

shorter wavelength fluorophore fluorescence comes from direct relaxation of the excited 

state of the acceptor. Since it does not go through a radical pair intermediate, the 
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Fig. 5.1 MFE comparison between unlinked Py/DMA in a solvent mixture of 

THF/DMF and Phen-12-O-2-DMA in DMF 
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magnetic field has no effect on the direct fluorescence, but increases the exciplex 

fluorescence at longer wavelength.  This is clearly illustrated in Fig. 5.3 which plots the 

MFE as a function of emission wavelength.   

 

a) b) c) 

Fig. 5.2 MFE as a function of emission wavelength, the blue and green curves are 

fluorescence intensity with high field and no field applied, respectively. The excitation 

wavelengths for each compound are chosen to maximize MFE a) phen-12-O-2-DMA in 

DMF, excitation wavelength 308nm b) pyrene-12-O-2-DMA in DMF, excitation 

wavelength 346nm c) anthracene-12-O-2-DMA in 40% THF / 60% acetone, excitation 

wavelength 405nm 
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Fig. 5.3 MFE as a function of emission wavelength, a) phen-12-O-2-DMA b) pyrene-12-O-

2-DMA c) anthracene-12-O-2-DMA, the conditions are the same as in Fig. 5.2, MFE is 

defined as ΔF/ F(B=0) 
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 Fixing the emission filter to be around the peak exciplex fluorescence, we also 

measured the MFE signal for the three compounds as a function of excitation wavelength.  

The results are shown in Fig. 5.4. In general the MFE is largest at the peak absorption 

wavelength. The phenanthrene, pyrene and anthracene compounds have maximum MFE 

of 130%, 60%, and 12% respectively. The peak absorption wavelength increases as the 

MFE on fluorescence decreases; they are 308 nm, 346 nm, and 405 nm, for the three 

compounds respectively. Anthracene-12-O-2-DMA displays significant MFE with 

excitation in the visible, which is a very desirable quality. The drawback for this 

molecule is the low ratio of exciplex fluorescence to prompt fluorescence. Shortening the 

linker between the donor and acceptor increases the efficiency of electron transfer and 

exciplex formation. We synthesized a shorter version of the compound: anthracene-8-O-

a) b) c) 

Fig. 5.4 MFE as a function of excitation wavelength, the blue and green curves are 

fluorescence intensity with high field and no field applied, respectively. The emission 

wavelengths are chosen to be the exciplex fluorescence peak for each compound a) phen-12-

O-2-DMA in DMF, emission wavelength 525 nm b) pyrene-12-O-2-DMA in DMF, emission 

wavelength 550 nm c) anthracene-12-O-2-DMA in 40% THF / 60% acetone, emission 

wavelength 550 nm 

 

250 300 350 400 450
0

10

20

30

40

50

60

70

excitation wavelength (nm)

fl
u
o
re

s
c
e
n
c
e
 i
n
te

n
s
it
y
 (

A
.U

.)

 

 

high field

no field

300 350 400 450 500 550
-2

0

2

4

6

8

10

excitation wavelength (nm)

 

 

high field

no field

250 300 350 400 450
0

10

20

30

40

50

60

70

excitation wavelength (nm)

 

 

high field

no field



 

58 

 

2-DMA. However, this molecule needs UV excitation to display MFE on the order of 

10%.  

  We pay particular attention to the phenanthrene compound which displays the 

largest MFE. Fig. 5.5a) shows MFE as a function of excitation wavelength.  MFE is as 

high as 130% at around 308 nm, and drops to about 80% at 355 nm. For transient 

measurements we are restricted to excite at 355 nm as that is the pulsed source we have 

available. In Fig. 5.5b) we compare the fluorescence emission curves at these two 

different excitation wavelengths. High field is applied and the curve is normalized by the 

fluorescence intensity at 400 nm. They have different shapes which suggest there are 

different excited states; some are more likely to be excited by shorter wavelength. 

Excitation at 308 nm produces a higher proportion of red-shifted exciplex fluorescence. 

Since MFE is larger at longer emission wavelength, this is likely to be the source of the 

Fig. 5.5 a) MFE of phen-12-O-2-DMA as a function of excitation 

wavelength b) fluorescence emission curves with high magnetic field at 

two different excitation wavelengths, normalized to fluorescence 

intensity at 400 nm 
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difference in MFE of the two excitation wavelengths. 

 

5.2 Transient fluorescence measurements 

 We have also measured the magnetic field effect on transient fluorescence of the 

chained compounds. The sample cuvettes are excited with an Nd-YAG pulsed laser 

operating at 355 nm (Spectra-Physics quanta-ray). The pulse width is 5 ns.  The 

fluorescence is collected from the bottom of the cuvette and directed through a light 

guide onto a PMT (Hamamatsu HF11526-20-NF). High (1500 G) and zero magnetic 

fields are alternatively applied to the sample by an electromagnet. The output from the 

PMT is recorded and averaged on an oscilloscope (Tektronix TDS 2024B).  

 The results for phen-12-O-2-DMA are shown in fig. 5.6. A total of 320 pulses are 

averaged to produce each trace. We plot the time resolved fluorescence under high field 
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Fig. 5.6 Transient fluorescence measurements on phen-12-O-2-DMA a) The sample is 

degassed by purging with N2 gas. b) The sample is not purged  
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and no field conditions, for samples that have been purged with N2 gas to remove oxygen 

and not purged. At zero field, the fluorescence intensity of the purged sample is about 

67% higher than the unpurged sample. The MFE is 79% and 26% for the purged and 

unpurged samples, respectively. This illustrates the strong quenching of the radical state 

by oxygen. 

 Similar to unchained systems, the effect of solvent on MFE is also significant for 

the chained compounds. In fig. 5.7, we compare the transient fluorescence measurements 

of pyrene-12-O-2-DMA in two different solvents. On the left we have DMF. On the right 

we have 25% DMF and 75% THF, which has a much lower dielectric constant than pure 

DMF. After the electron transfer, the donor and acceptor are oppositely charged. High 

dielectric constant of DMF provides effective shielding of the Coulomb attractive force. 

Therefore the donor / acceptor pair diffuses farther apart from each other. Longer 

distance reduces the effect of exchange interaction and allows more effective intersystem 

crossing. This leads to larger MFE as intersystem crossing is the step affected by external 

magnetic field. Longer separation also reduces fluorescence intensity as the molecule is 

more likely to be quenched non-radiatively. 
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5.3 Transient absorption measurements 

 Steady state and transient fluorescence measurements allow us to observe the 

signal from recombination of the radical pair in the singlet state. If the spin state is triplet 

at reencountering, there could be an electron back transfer to create triplet states of the 

acceptor. In unchained systems, we can observe the signal from the triplet states from 

delayed fluorescence. The triplet species also have different absorption spectra from the 

ground or singlet states. We observe these triplet states in the chained compounds directly 

by measuring transient absorption. The excitation source is Nd-YAG pulsed laser at 355 

nm (Spectra-Physics quanta-ray). The probe beam is aligned to be nearly collinear with 

the excitation pulse and detect on a photodiode. The signal is fed to and averaged by an 

oscilloscope (Tektronix TDS 2024B). Electromagnet is used to alternatively apply high 

field (1500 G) and no field.  For the probe laser we first use a supercontinuum laser 

(Fianium SC-450) and acousto-optic tunable filter (AOTF) to scan through various 
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Fig. 5.7 Transient fluorescence measurements on pyrene-12-O-2-DMA a) The solvent is 

DMF b) The solvent is 25% DMF and 75% THF  
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wavelengths in the visible range to identify the approximate locations of the absorption 

peak. Then we use various single wavelength lasers with the suitable wavelength for each 

compound, as these lasers are more stable and provide higher power. 

 The triplet states should have the following properties: very sensitive to the 

presence of oxygen, much longer lifetime compared to the prompt fluorescence when 

oxygen is removed, display MFE that have the opposite sign to prompt fluorescence 

because the triplet population is reduced when intersystem crossing is suppressed.  These 

properties are demonstrated in the measurement of phen-12-O-2-DMA in fig. 5.8. Fig 

5.8a) shows the signal from a degassed sample. The absorbing species has a lifetime on 

the order of 10 μs, which is two orders of magnitude larger than the transient 

fluorescence signal. In b), the sample is opened to air, and the transient absorption signal 

mostly disappeared as the lifetime of the triplet states is shortened by the presence of 

oxygen. When the same sample is re-degassed, the signal comes back. This high 

a) b) c) 

Fig. 5.8 Transient absorption measurement of phen-12-O-2-DMA with probe laser at 488 

nm a), the sample is degassed by purging with N2 gas b) the sample is opened to air, oxygen 

comes into the solution c) the same sample is degassed again 
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sensitivity to oxygen suggests that we are observing absorption by triplet states. Opposite 

to normal MFE on fluorescence, application of magnetic field reduces the signal. For 

phen-12-O-2-DMA, the MFE on triplet absorption is 8%. We show similar measurements 

on pyrene-12-O-2-DMA and anthracene-12-O-2-DMA in fig. 5.9. The MFE for them are 

11% and 26%, respectively.  

 

5.4 Discussion 

 We compare the MFE measurements on the three chained compounds in Table 

5.1. We can observe two trends. The strength of MFE on singlet fluorescence is high for 

molecules that show a smaller MFE on triplet absorption and absorb higher energy 

photons. These trends can be explained as follows. In the absence of external magnetic 

field, the excited system has a certain branching ratio between singlet and triplet states. 

Photoexcitation generates singlet and triplet in the ratio of s/(1-s). Application of 

magnetic field increases the singlet branching ratio s by Δs. The MFE on singlet and 
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Fig. 5.9 Transient absorption measurements on pyrene-12-O-2-DMA and anthracene-12-O-

2-DMA a) pyrene-12-O-2-DMA, probe wavelength 447nm, MFE: 11% b) anthracene-12-O-

2-DMA, probe wavelength 447nm, MFE: 26% 
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triplet populations are then Δs/s and -Δs/(1-s), respectively. Therefore for compounds 

with a small s under no field, MFE will be large for singlet fluorescence and small for 

triplet absorption, and vice versa for compounds with a large s. This is why the MFE on 

these two channels are opposite in sign and their magnitudes are negatively correlated. 

This is the same explanation for why MFE on delayed fluorescence has the opposite sign 

to prompt fluorescence. 

 

 

 The energy of a radical pair that is oppositely charged increases with separation 

distance due to Coulomb interaction.  Therefore the energy of photon absorbed could be 

positively correlated with average separation distance of radical pairs generated. Longer 

separation reduces the effect of exchange interaction and allows more effective 

intersystem crossing. This leads to a lower singlet branching ratio s, greater effect due to 

external field, therefore a higher Δs. As a result, compounds that absorb at higher energy 

show a larger MFE on fluorescence.   

 We find further evidence for this interpretation in measurements of the quantum 

yields of the three molecules measured at their respective absorption peaks. The data is 

summarized in the last column in Table 5.1. To obtain the quantum yield we first 

measured the total fluorescence intensity including both prompt and exciplex 

 MFE on 

fluorescence 

(singlet) 

MFE on 

transient 

absorption  

(triplet)  

Absorption 

peak 

Quantum Yield 

phenanthrene 130% 8% 308 nm 0.20 

pyrene 60% 11% 346 nm 0.27 

anthracene 12% 26% 405 nm 0.58 

Table 5.1 Comparison of the MFE signals of three chained compounds 
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fluorescence. We then compared to a R6G sample in water with known quantum yield of 

0.95, and arrived at the final results with correction for the spectra of the excitation 

source and the detector. A high quantum yield indicates a high percentage of radiative 

decay and correspondingly a low rate of non-radiative decay. Exciplex fluorescence and 

triplet absorption are parts of radiative and non-radiative decay, respectively. Therefore 

for a molecule that shows a small MFE on exciplex fluorescence, we expect large 

fluorescence intensity, and higher quantum yield. This is the trend we observe in the data. 

 The results suggest that molecules with shorter absorption wavelength are more 

likely to display larger MFE. This could also be the reason that it is difficult to identify 

systems that absorb in the visible and show MFE on fluorescence. Furthermore, systems 

with large MFE on the singlet channel do not necessarily have large MFE on the triplet 

channel. They can in fact be negatively correlated, and the determining factor is the 

singlet to triplet ratio in absence of external field. High singlet to triplet ratio favors larger 

MFE on the triplet channel, and lower ratio favors larger MFE on the singlet channel. 

These results suggest potential directions for engineering molecular systems toward 

desired properties with respect to MFE. 
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Chapter 6. Local geometry of electromagnetic waves and its 

role in molecular multipole transitions 

The earlier chapters describe studies of magnetic fields, and this chapter presents 

our work on optical fields. This chapter is based on ref. [83]. We study the response of a 

small molecule to monochromatic fields of arbitrary three-dimensional geometry.  First, 

we consider the allowed configurations of the fields and field gradients at a single point 

in space.  Many configurations cannot be generated from a single plane wave, regardless 

of polarization, but any allowed configuration can be generated by superposition of 

multiple plane waves.  There is no local configuration of the fields and gradients that 

requires near-field effects.  Second, we derive a set of local electromagnetic quantities, 

where each couples to a particular multipole transition.  These quantities are small or zero 

in plane waves, but can be large in regions of certain superpositions of plane waves.  Our 

findings provide a systematic framework for designing far-field and near-field 

experiments to drive multipole transitions.  The proposed experiments provide 

information on molecular structure that is inaccessible to other spectroscopic techniques, 

and open the possibility for new types of optical control of molecules. 

6.1. Introduction 

Propagating plane waves comprise only a minute fraction of all solutions to 

Maxwell’s Equations.  Fields with sinusoidal time dependence but with more complex 

spatial variation routinely arise in the context of multiple-wave interference and optical 
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near fields.  These variously shaped fields can excite molecular multipole transitions that 

are tickled weakly—if at all—by far-field plane waves.  Here we study the geometry of 

non-plane-wave electromagnetic fields, and the linear interaction of these fields with 

small molecules.  For each type of multipole transition we present a local electromagnetic 

quantity that determines the strength of the coupling to that transition.  We propose 

simple field configurations and spectroscopic techniques that selectively probe particular 

multipole transitions. 

For most molecules, far-field plane waves couple weakly to molecular multipole 

transitions beyond electric dipole, and in some cases the coupling is identically zero.  

Weak coupling beyond electric dipole arises because the wavelength of light is typically 

much larger than molecular dimensions.  Higher multipole transitions are excited more 

weakly than electric dipole by powers of (a/), where a is the molecular size and  is the 

wavelength.  Additionally, excitation of some multipole transitions by plane waves is 

identically zero due to the definite relations among electric fields, electric field gradients 

and magnetic fields that arise in all plane waves.  These transitions vanish for plane 

waves regardless of the wavelength, polarization, or degree of orientation of the 

molecules. 

Steeply varying fields are widespread in Nature.  They play a particularly 

important role in intermolecular interactions because the electromagnetic field due to one 

molecule may be highly nonuniform over the extent of its neighbor.  These field 

gradients couple to multipole transitions beyond electric dipole that are important in 

mediating intermolecular energy transfer[84], intermolecular forces[85], and chemical 
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reactions[86].  To understand these processes[87,88], one would like to explore the 

response of a test molecule to a variety of time-harmonic electric fields, magnetic fields, 

and field gradients. 

Metallic nanostructures, photonic crystals, and metamaterials also generate local 

fields that are highly contorted.  Surface-enhanced optical effects are well known for 

molecules near metal surfaces[89,90], and include enhanced fluorescence[91], Raman 

scattering[92], two-photon excitation[93], and photochemistry[94]. These phenomena are 

typically interpreted in terms of enhancement of the electric field strength alone[89]; but 

the relative magnitude and direction of electric and magnetic fields and their gradients 

near a nanostructure need not correspond with their values in a plane wave, and can 

thereby violate far-field selection rules.  For instance, it was recently predicted that 

magnetic nanostructures can dramatically enhance the rate of intersystem crossing in 

nearby molecules through interaction of magnetic gradients with a magnetic quadrupole 

transition in a radical pair[14].  Nanostructures can sculpt the fields to bring “forbidden” 

transitions to light.  

Thus it is interesting to study the response of molecules to non-plane-wave 

electromagnetic fields.  In section 2 we study the possible local geometries of 

monochromatic fields allowed by Maxwell’s Equations.  There are many valid field 

configurations that cannot be produced by a monochromatic plane wave.  This distinction 

between the space of possible fields, and the space of plane wave fields is an important 

aspect of spectroscopy that has not received adequate attention.   

We show that any valid configuration of electric and magnetic fields and field 

gradients can be created at discrete points in space by superposition of up to 32 linearly 
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polarized monochromatic plane waves.  Thus, while it may be convenient to use 

nanostructures or near-field optics to generate certain field configurations, these tools are 

not strictly necessary. 

Next we ask: What attributes of the field should one calculate to determine the 

rate of excitation of a particular multipole transition?  Our group previously considered 

this question in the context of randomly oriented chiral molecules and circular dichroism.  

We introduced a time-even pseudoscalar that measures the local handedness of the 

electric and magnetic fields: 

 BBEEC



0

0

2

1

2 


. (6.1) 

This “Optical Chirality” determines the dissymmetry in the rate of excitation of a small 

chiral molecule[95]. 

In section 3 we study how other bilinear field objects couple to other kinds of 

multipole transitions.  In section 3.2 we treat the coupling of electric field gradients to 

electric dipole-electric quadrupole (E1-E2) transitions.  These transitions average to zero 

for randomly oriented molecules, regardless of the field geometry.  Near an interface, 

however, molecules may have a uniaxial orientation, leading to several interface-selective 

signals for appropriately sculpted fields.   

In Section 3.3 we also treat electric dipole-magnetic dipole (E1-M1) transitions.  

Upon orientational averaging, these transitions survive only for chiral molecules and 

chiral fields.  For uniaxially oriented molecules, however, E1-M1 transitions combine 

with E1-E2 transitions to give an interface-selective signal for appropriately sculpted 
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fields.  Remarkably, many of these transitions are completely invisible to plane waves, 

but become visible in a standing wave. 

In sections 3.4-3.6, we construct simple standing wave fields which selectively 

excite E1-E2 and E1-M1 transitions in localized regions of space.  We propose a 

remarkably simple experiment to test these predictions. 

In section 4 we consider magnetic circular dichroism (MCD) as a perturbation to 

the electric dipole transition. We derive the electromagnetic quantity that couples to 

MCD and propose an experiment in which a focused beam of linearly polarized light 

probes the same molecular quantities that are usually probed with circularly polarized 

light in MCD.   

In 1964 Lipkin introduced ten conserved electromagnetic quantities that are 

quadratic in the fields, which he called the “Zilch”.[96]  He and subsequent workers 

failed to find any physical meaning for the Zilch.[97,98]  One of these, termed Z
000

, is the 

same as the optical chirality we previously introduced.  In section 5 we show that six of 

the remaining Lipkin terms are the EM quantities that couple to E1-M1 transitions, and 

the other three couple to molecules in DC magnetic fields.  We present a protocol for 

generating an arbitrary number of conserved Lipkin-like quantities. 

 

6.2 Allowable monochromatic fields 

How much freedom do Maxwell’s Equations give us to sculpt electromagnetic 

fields?  A small molecule is only sensitive to local fields and field gradients, so we 

restrict attention to these aspects of the field about a fixed point in space, chosen to lie at 
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the origin r = 0.  A related question is: can we generate any allowed field configuration 

using combinations of plane waves, or are there configurations that only arise in optical 

near-fields?  We show, perhaps contrary to intuition, that any time-harmonic local field 

configuration can be generated by superposition of propagating plane waves. 

The most general monochromatic electric field follows an elliptical trajectory, 

with arbitrary orientation, amplitude, ellipticity, and phase.  It is mathematically 

convenient to describe this configuration by the real part of  

 
tie  )0(~~

EE , (6.2) 

where E
~

 and )0(~
E  are complex vectors. We use symbols without tilde to represent 

physical quantities, which are the real parts of the corresponding complex terms.  A 

single propagating plane wave can generate any desired electric field ellipse.  One simply 

chooses the polarization, amplitude, and direction of propagation of the wave.  

Within the electric point-dipole approximation (PDA), the local electric field is 

the only quantity needed to describe the interaction of light with matter.  In this case 

plane waves span the space of relevant fields, so the distinction between plane waves and 

other fields is moot.  However, if one considers multipole transitions beyond electric 

dipole, then the magnetic field and the electric and magnetic field gradients become 

important.  In this case we find allowable field configurations that cannot be produced by 

a single plane wave. 

One can imagine a monochromatic field configuration that at a single point 

consists of an electric field ellipse and a magnetic field ellipse, each with arbitrary 

amplitude, ellipticity, orientation, and phase (Fig. 6.1).  This configuration is consistent 
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with Maxwell’s Equations, but unless E and B are always perpendicular, it does not occur 

in a plane wave.  First we show by explicit construction how to generate this 

configuration by combination of multiple standing waves.  Then we use an algebraic 

approach to show that any electric and magnetic field gradients allowed by Maxwell’s 

Equations can be superimposed on these ellipses by addition of more plane waves. 

 

Consider a standing wave composed of counterpropagating plane waves, linearly 

polarized in the same plane.  At the electric anti-nodes, the magnetic field is zero, and 

vice versa.  By overlapping the electric anti-nodes of two such standing waves, with 

different linear polarizations, phases, and propagation axes, one creates an arbitrary 

electric field ellipse at a point where the magnetic field is zero.  By combining the 

magnetic anti-nodes of two more standing waves in a similar manner, one creates an 

arbitrary magnetic ellipse where the electric field is zero.  Finally, one superimposes the 

electric ellipse with the magnetic ellipse, to achieve the arbitrary field configuration 

shown in Fig. 6.1.  We describe the state of the field in Fig 6.1 by a six-element complex 

vector,  BE
~

,
~

. 

x 
y 

z 

E 

B 

Fig. 6.1. Arbitrary electric and magnetic ellipses at a single point in space.  

This configuration cannot occur in a plane wave, but can occur in a 

combination of two standing waves. 
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Now we consider the electric and magnetic field gradients.  The electric gradient 

E
~

  has nine components E
~

, indicating the derivative of E
~
in the γ direction.  The 

magnetic gradient also has nine components.  Once we have determined the vector 

 BE
~

,
~

, Maxwell’s Equations set the divergence and curl of E
~

 and B
~

, leaving us with 

five independent components for E
~

 and five for B
~

 . Thus we have 6 independent 

components for the fields, and 10 for the gradients.  We describe the complete field 

geometry at a single point by a vector,  BEBEQ
~

,
~

,
~

,
~~

 , with 16 independent complex 

components. 

Now the question is: can any value of Q
~

 be created by superposition of linearly 

polarized plane waves?  Every plane wave contributes to E
~

, B
~

, E
~

 , and B
~

 , and at a 

single point in space the wave can be represented as a vector in the space of Q
~

.  If we 

can find a set of plane waves that span the space of Q
~

, then the problem is solved. 

To construct a basis set for Q
~

, we restrict attention to linearly polarized, 

monochromatic plane waves, each with fixed wavevector and polarization, but variable 

amplitude.  These are of the form: 

 )exp()exp(
~ )0(  itii  rkEE  

 EkB
~ˆ1~


c

 

    )exp()exp(
~ )0(  itiikiEE  rk  
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             )exp()exp(
~ )0(  itiikiBB  rk  (6.3) 

with E
(0)

 and k real.  We have the constraints: 

 0)0( kE , (6.4) 

 0|| kk . (6.5) 

For each plane wave we evaluate its contribution to Q
~

 at the origin.  In Table 1 

of Appendix 1 we list 16 monochromatic plane waves with = 0 which span the real part 

of Q
~

.  The same 16 waves with = /2 span the imaginary part of Q
~

. 

Thus it is possible, using only plane waves, to achieve an arbitrary configuration 

of EM fields and gradients at a point in space.  Nanostructures and near-field optics may 

offer practical advantages for the creation of these fields, but these tools are not strictly 

necessary.  We now consider the response of a molecule to a field with an arbitrary value 

of Q
~

. 

 

6.3 Molecular Multipole Transitions 

6.3.1 Induced oscillating molecular multipoles. 

A molecule subjected to a time-harmonic EM field develops time-harmonic 

charge and current distributions, which may be described by a multipole expansion:[99] 
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where α, β, γ are Cartesian indices, and ~ , 
~

, m~  are the oscillating electric dipole, 

electric quadrupole and magnetic dipole, respectively.  The quantity ~  is the dynamic 

electric dipole polarizability, A
~

 and a~  are the mixed electric dipole-quadrupole 

polarizabilities, and G
~

 and g~  are the mixed electric-magnetic dipole analogues. We 

use the Einstein summation convention in which repeated Cartesian indices are summed. 

The transition matrix elements and the lineshape functions are each, in general, 

complex. The polarizability tensors such as A
~

and G
~

 are products of matrix elements 

and lineshapes, so these are generally complex too.  In the absence of a DC magnetic 

field, the dynamics respect time-reversal symmetry, and all molecular eigenfunctions can 

be chosen to be real[100]. In this case electric dipole and electric quadrupole transition 

matrix elements are purely real, and magnetic dipole transition matrix elements are 

purely imaginary.    From the perturbation theory expressions for the molecular response 

tensors one can show that:  

  


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~~

~~

 (6.7) 

where A , A  , G  and G   are real frequency-dependent functions.  Note that we 

use a different notation from Barron[99] because we are restricting attention to conditions 

where the molecular eigenfunctions can be chosen to be real. 

The induced multipoles absorb energy from the fields at an average rate 
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where 
t
 indicates an average over time.  Substitution of Eq. 6.6.6 into Eq. 6.6.8 leads 

to an expression for the rate of absorption in terms of molecular properties and local EM 

fields. This expression contains many terms, each of which is a product of a molecular 

tensor component and two field quantities.  

Each term is responsible for a spectroscopic observable.  We classify these 

observables by the field components that contribute.  For instance, if we express the 

electric field as in Eq. 6.6.2, then the first term in the expansion is 

 
)0()0(

11  EEEE
  , (6.9) 

which is responsible for the pure electric dipole absorption which usually dominates.  We 

neglect terms of order M2 and higher, because these are negligibly small for most 

molecules. 

In non-plane wave geometries, the relative strengths of the field quantities can be 

adjusted to enhance the contribution of particular molecular terms.  This flexibility 

enables enhanced spectroscopy with sculpted fields, and in some cases gives rise to 

observables not probed by plane waves. 

 

6.3.2 Electric dipole – electric quadrupole (E1-E2) excitation 

Two effects contribute to E1-E2 transitions: (1) interaction of the electric field 

with dipole moments induced by the field gradient and (2) interaction of the field gradient 

with quadrupole moments induced by the electric field.  We now treat each in turn.  



 

77 

 

The complex fields at the origin tieEE 


 )0(~~
, tieEE 


 )0(~~

, can be 

expressed as  
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, (6.10) 

where E  and E  are the real oscillating field components. The electric dipole moment 

induced by an electric field gradient is given by combining Eqs. 6.6 and 6.10: 
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The time-dependent absorption rate due to this interaction is: 

 


 EEAEEAE 

33

1   (6.12) 

where )~Re(    is the real component of the complex electric dipole moment; and we 

used the fact that for time-harmonic fields,   EE 2 . 

Similarly, the molecular electric quadrupole moment induced by the electric field 

is: 
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where we have used the fact that  aA ~~
 .  The time-dependent absorption rate due to 

this interaction is 
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The total absorption rate is the sum of Eqs. 6.12 and 6.14. The electromagnetic 

quantity that couples to A  is: 
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, (6.15) 

and the one that couples to A is: 
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which vanishes. Thus the rate of the E1-E2 transition is: 
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Terms that couple to A  with all three indices distinct give rise to optical 

activity of oriented molecules[101].  The average of the third rank tensor A
~

 over all 

molecular orientations is: 

   


AA
~

6

1~



, (6.18) 

where  is the third rank isotropic tensor. The tensor components of A
~

 are related by 

 AA
~~

 ,[99] whence 0
~

 A .  Therefore the E1-E2 absorption vanishes for 

unoriented molecules, regardless of the geometry of the EM field.  
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6.3.3 Electric Dipole - Magnetic Dipole (E1-M1) Transition 

Two effects also contribute to E1-M1 transitions: (1) interaction of the electric 

field with electric dipole moments induced by the magnetic field and (2) interaction of 

the magnetic field with magnetic dipole moments induced by the electric field.  We now 

treat each in turn. 

The magnetic field induces an electric dipole moment according to  BG
~~~  .  

By following the same algebra used to derive Eq. 6.6.12, we find that this term 

contributes a time-dependent absorption rate 

   BEGBEGE   . (6.19) 

The electric field induces a magnetic dipole moment according to  Egm
~~~  .  

The absorption rate due to this interaction is  

   BEGBEGmB   , (6.20) 

where we have used the fact that  gG ~~
 . The rates in Eqs. 6.19 and 6.20 are 

summed to give the total rate of E1-M1 absorption 

 
t

ME BEBEG 
   11 . (6.21) 

Thus the quantity 
t

BEBE 
   determines the rate at which E1-M1 transitions are 

excited in oriented molecules. 

In the case of unoriented molecules, we take the isotropic average and use 

 I GG 
 3

1
, where I is the 3-by-3 identity matrix.  This quantity is only nonzero 
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for chiral molecules.  Application of Maxwell’s Equations in free space to the quantity 

t
BEBE 

   shows that this object is proportional to Optical Chirality, and is 

responsible for chiral dissymmetry in the excitation of isotropic molecules. 

Higher multipole transitions such as E1-M2, E2-M1, and M1-M1 can be 

calculated in similar manner.  However the molecular response tensors for these 

transitions tend to be very small, so we deem experimental observation unlikely in the 

near term. 

 

6.3.4. Multipole transitions in linearly polarized standing waves 

Here we demonstrate that a linearly polarized standing wave excites molecular 

transitions that are invisible to traveling waves.  These “achiral multipole transitions” are 

only detectable for molecules that are uniaxially oriented, and lie within a plane of sub-

wavelength thickness.  This geometry is common at liquid interfaces, so we propose that 

achiral multipole transitions can be used for surface-sensitive spectroscopy. 

Consider a standing wave composed of two waves counter-propagating along z 

and polarized along x.  We allow the two waves to have different amplitudes, E0 and 0E  . 
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The only contribution to E1-E2 absorption is from xzx EE , and the only contribution to 

E1-M1 absorption is from yxyx BEBE   . The relevant field objects are: 
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 Achiral E1-E2:         )2sin(
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 (6.24) 

 Achiral E1-M1:   )2sin(00 kzEkEBEBE
t

yxyx
  . (6.25) 

Eq. 6.6.23 determines the spatial dependence of E1-E1 absorption, which is the usual 

quantity measured in a standing wave.  Eqs. 6.24 and 6.25 determine the rates of achiral 

multipole transitions, and have the remarkable property that they vanish for a plane wave 

(setting E0 or 0E   to zero).  Achiral multipole transitions are invisible to a single linearly 

polarized plane wave.  We show below that these transitions are also invisible to 

circularly polarized light, supporting our contention that standing waves can see 

transitions that plane waves cannot. 

Substitution of Eqs. 6.24 and 6.25 into the overall rate of absorption gives 
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The sin(2kz) dependence of the achiral multipole transitions combines with the cos(2kz) 

dependence of the E1-E1 transition to create a slight phase shift in the standing wave 

absorption pattern relative to what would be expected for pure electric dipole absorption. 
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The consequences of Eq. 6.6.26 vary depending on the degree of orientational 

order of the molecules.  Eq. 6.6.26 applies to perfectly oriented molecules, such as might 

be found in a crystal.  Under isotropic averaging, as in a liquid, 0
~




A , and the off-

diagonal components of G
~

 average to zero, even for chiral molecules.  Thus these 

transitions are undetectable in bulk liquid.  Near a liquid interface, however, molecules 

may adopt a uniaxial orientation.  A DC electric field can orient molecules too.  If the 

orientation axis coincides with the optical z-axis, then we average Eq. 6.6.26 about z, to 

get: 

 
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t
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Figure 6.2.  Schematic of an experiment to probe achiral E1-E2 and E1-M1 transitions in a 

liquid.  A transparent barrier of thickness (n/2 + ¼) separates two compartments of liquid and is 

exposed to a standing wave (for clarity we draw a slab of thickness /4, though this is 

mechanically implausible).  The standing wave is moved perpendicular to the plane of the slab.  

Molecules may have larger (or smaller) concentration near the interface than in bulk, and may 

have orientational order near the interface.  Only E1-E2 and E1-M1 excitation of the surface-

oriented molecules oscillates with translation of the standing wave; the total rate of E1-E1 

excitation does not vary. 
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6.3.5 Experiment to detect achiral multipole transitions 

We propose a conceptually simple experiment to probe the achiral multipole 

transitions of molecules at a liquid interface. A transparent slab of thickness (n/2 + ¼), 

where n is an integer, is immersed in a liquid. The liquid molecules near the surface are 

oriented by interaction with the slab, so the orientation is in the opposite sense on the two 

faces. A standing wave is generated perpendicular to the slab. The absorption is 

monitored, for instance by fluorescence, as the standing wave is translated along the optic 

axis (Fig. 6.2). 

The total fluorescence from the bulk is independent of the position of the 

standing wave.  If there is an enrichment or depletion of molecules near the surfaces of 

the slab, the periodic modulation in the E1-E1 fluorescence from one face is cancelled by 

an out-of-phase modulation in the E1-E1 fluorescence from the opposite face (a 

consequence of the choice of slab thickness).  But if the molecules are oriented by 

interaction with the faces of the slab, then both the orientation and the direction of the 

electric field gradient are opposite on the two faces.  The achiral multipole transitions 

from the two phases thereby have in phase periodic modulation.  One records the total 

fluorescence as a function of time, and the amplitude of the oscillatory component 

indicates the strength of these transitions.  One can also conceive a variant of this 

experiment in which the liquid forms a thin film in a channel of thickness (n/2 + ¼)
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6.3.6 Multipole transitions in circularly polarized standing waves 

Standing waves with circular polarization also excite certain multipole transitions 

with greater selectivity than is obtained from circularly polarized plane waves. Consider a 

standing wave consisting of counterpropagating left- and right-circularly polarized 

waves, with possibly different amplitudes: 
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We call this the 
+


-
 configuration. The standing wave generates the following EM 

quantities which couple to multipole transitions: 
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As we found with linear polarization, the achiral E1-E2 and E1-M1 transitions are not 

excited by a single plane wave (setting E0 or 0E   to zero), but are only found in the 

standing wave.  These transitions are truly invisible to plane-wave spectroscopy. 

We refer to terms containing yzxEE and xzy EE as chiral, because these are 

responsible for optical activity of oriented chiral molecules.  Our group previously 

showed that there exist configurations of the EM field in which the ratio of optical 

chirality to electric energy density is enhanced relative to the ratio found in circularly 

polarized light (CPL)[95].  It is then interesting to ask whether the same fields show an 

enhancement in the relative strength of the chiral E1-E2 terms. 

The chiral selectivity of a light-matter interaction is described by the 

dissymmetry factor, defined as the fractional difference in rate of excitation between two 

mirror-image configurations of the fields (or the molecule). 
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We previously considered isotropic chiral molecules for which the only chiral transition 

is E1-M1.  We found that in a near-node of a 
+


-
 standing wave,  
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As 00 EE  , this enhancement factor can become very large.   

Comparison of Eqs. 6.30 and 6.33 shows that both equations have the same 

dependence on E0 and 0E   and that both equations are independent of position.  Thus the 
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dissymmetry factor for E1-E2 transitions in oriented chiral molecules in a 
+


-
 standing 

wave undergoes the same enhancement as for E1-M1 transitions in unoriented molecules.  

In this regard, the fields in regions near the electric minima are truly “superchiral” for the 


+


-
 configuration. 

6.4 Magnetic Circular Dichroism 

Just as the optical chirality, C determines the local strength of circular dichroism, 

we expect another EM quantity,, to determine the local strength of magnetic CD 

(MCD). While C is a time-even pseudo-scalar, we expect  to be a time-odd axial vector. 

MCD arises through a magnetic modification to the electric dipole polarizability 

tensor[87,102].  In the presence of a DC magnetic field, the electric field-induced dipole 

moment becomes: 
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, (6.36) 

where ~  is the perturbation to the electric polarizability tensor by the static external 

field .B  The term proportional to   is responsible for MCD [99]. The rate of 

absorption is  

   BEEE   . (6.37) 

As with regular absorption, MCD arises through a purely E1-E1 transition, in the sense 

that only the oscillating electric fields of the incident light need to be considered.  The 

static magnetic field cannot contribute to absorption.  However, the tensor ~  contains 
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an antisymmetric component with respect to exchange of the first two indices, in contrast 

to the usual polarizability ~ which is symmetric.  This antisymmetry explains why the 

real part of ~  determines MCD, while the imaginary part of ~  determines regular 

absorption.  

If we consider randomly oriented molecules, then the relevant isotropically 

averaged field quantity is: 

 BEE  )( 
 BEE . (6.38) 

Eq. 6.6.38 implies that EE  is the quantity that couples to MCD.  This quantity is 

maximized when E and E are orthogonal, i.e. when the electric field describes a circle.  

The optical-frequency magnetic field and electric and magnetic gradients are irrelevant 

for MCD.  Thus MCD is maximized for circularly polarized light, and we do not expect 

to find sculpted fields with enhanced MCD.  This finding contrasts with the 

enhancements predicted for chiral CD, and highlights the different physical origins of 

these two effects. 

The expression for  captures the physical picture of the electric field vector 

rotating about an axis, which is often associated with circular polarization. However, 

circular polarization is not necessary for E to describe a circle.  Consider a Gaussian 

beam coming to a focus, with linear polarization in x, propagating in z.  The electric field 

is given by the well-known expression[103].  
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where 0w  is the beam waist, 
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There is also a component of the electric field along z.  To first order in 
0w


, zE is [104]: 
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Near the focus, the electric field rotates in the x-z plane, which generates a non-

zero time average of EE  . At the beam waist, z = 0, we find: 
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Therefore we predict that a DC magnetic field in the ŷ  direction gives rise to differential 

absorption across the beam cross section. This signal has the same origin as magnetic 

CD. 

We propose an experiment to demonstrate this effect via fluorescence detected 

MCD (FDMCD), as illustrated in Fig. 6.3.  A thin film of fluorescent material is placed in 

the focus of a linearly polarized beam.  An external magnetic field is applied transverse to 

the beam and the polarization.  The small FDMCD signal is superimposed on the much 

larger E1-E1 fluorescence, so the FDMCD appears as a slight shift along the x-axis of the 
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peak position of the fluorescence.  By modulating the magnetic field, this peak is made to 

oscillate along x, leading to a fluorescence signal that can be detected with a spatially 

resolved detector and a lock-in amplifier. 

 

6.5 Relation to the Lipkin Zilch 

In 1964 Lipkin introduced ten new conserved electromagnetic quantities, but did 

not find a physical interpretation [96].  We recently showed that one of these terms, Z
000

 

is the same as our optical chirality, C [95].  Here we show that the remaining nine terms 

are linear combinations of quantities that we derived above. 

 Consider six of Lipkin’s terms given by the off-diagonal elements of 

 
  )()()()(][0

HHEEHHEE  HHEEZ

. (6.42) 

Figure 6.3. Magnetic circular dichroism in a focused linearly polarized beam.  Near the focus, 

the electric field describes an ellipse in the x-z plane.  A magnetic field along the y axis is 

predicted to induce a differential absorption across the beam. 

x 

y z B 
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The three off-diagonal terms in 0Z  each separate into two terms of the form  

  )()( HE  HE . (6.43) 

Using Gaussian units with c = 1 as used in Lipkin’s paper, and applying Maxwell’s 

equations in free space, we have 

  )()( HE  HEBEBE  . (6.44) 

Therefore each off-diagonal element 0Z  is a linear combination of the EM quantities 

that drive E1-M1 transitions.  

There are three additional conserved quantities from Lipkin of the form: 

 )( HHEE   . (6.45) 

These are components of the flux of optical chirality C, and are also related to MCD. We 

showed above that the quantity EE   determines the extent of MCD.  If we also consider 

the perturbation to the magnetic polarizability by a magnetic field, then an identical 

procedure would identify HH  as the relevant quantity for magnetic dipole transitions.  

Magnetic dipole transitions are normally much weaker than electric dipole transitions, 

and can be neglected.  

Conservation in vacuum for each of the Lipkin terms is a special case of a 

general conservation law for any quantity of the form: 

 ABBAY   , (6.46) 

where A and B are components of E and B acted on by any linear operator, such as time 

or spatial derivative.  We define the corresponding flux  
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 ABBA Φ , (6.47) 

and immediately obtain a conservation law in free space: 

 0 ΦY , (6.488) 

 This procedure gives an infinite number of quantities that are conserved in 

vacuum. These quantities are likely to have the physical interpretation of being the 

couplings to molecular polarizability tensor components.  

 

6.6 Discussion 

We showed that there exist many configurations of the electromagnetic fields 

and field gradients that cannot be generated from a single plane wave; but that any local 

configuration of the field can be generated from a combination of plane waves.  There 

exist achiral multipole transitions in oriented molecules that are completely invisible to 

plane waves, but that are detectable in suitably designed optical standing waves.  Just as 

circular dichroism measurements probe aspects of molecular structure that are not 

detected by conventional absorption, we expect these achiral multipole transitions also to 

hold new molecular information.  We also found that a tightly focused beam of linearly 

polarized light in a magnetic field probes the molecular properties usually probed by 

magnetic circular dichroism.  Here we considered only linear optics, where the rate of 

excitation is quadratic in the fields.  The field objects we considered here can appear in 

greater number when one considers nonlinear optics, and interesting effects may arise in 

that domain as well.[105] 
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Appendix 1: Plane-wave basis for local field geometries 

At a single point in space, one requires sixteen independent complex quantities 

to describe the electric field, magnetic field, electric gradients and magnetic gradients for 

a time-harmonic solution to Maxwell’s Equations. These quantities can be arranged in a 

sixteen-dimensional vector )exp(
~

tiQ , where Q
~

 is complex.  We choose to construct a 

basis for Q
~

 from plane waves of the form )exp()exp()0(  itii rkE , for which we can 

choose the phase   to give the real and imaginary parts independently. Therefore it is 

sufficient to show that one can construct the real part of Q
~

 from plane waves. The 

imaginary part follows similarly. 

In the following table, we list 16 plane waves and their associated vectors in the 

space of Q
~

, calculated at the origin r = 0. A similar set with = /2 completes the basis 

for all possible EM fields and gradients at r = 0. These vectors can be verified to be 

linearly independent by checking that the determinant of the 16 by 16 matrix is non-zero. 

Therefore these vectors form a basis for the vector space.  Of course this choice of basis 

is not unique.  We have chosen units of time and distance such that 10  ck .  We only 

give five of the gradients of E and B; the others are determined from Maxwell’s 

Equations. 
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k  E  B  ( xyE , yzE , zxE , xxE , yyE ) ( xyB , yzB , zxB , xxB , yyB ) 

(0, 1,0) ( 1E ,0,0) (0,0, 1E ) ( 1E ,0,0,0,0) (0,0,0,0,0) 

(0, 0,1) ( 2E ,0,0) (0, 2E ,0) (0,0,0,0,0) (0, 2E ,0,0,0) 

(1,0,0) (0, 3E ,0) (0,0, 3E ) (0,0,0,0,0) (0,0, 3E ,0,0) 

(0, 0,1) (0, 4E ,0) ( 4E ,0,0) (0, 4E ,0,0,0) (0,0,0,0,0) 

(1,0,0) (0,0, 5E ) (0, 5E ,0) (0,0, 5E ,0,0) (0,0,0,0,0) 

(0, 1,0) (0,0, 6E ) ( 6E ,0,0) (0,0,0,0,0) ( 6E ,0,0,0,0) 

(0, 0,-1) ( 7E ,0,0) (0, 7E ,0) (0,0,0,0,0) (0, 7E ,0,0,0) 

(-1,0,0) (0, 8E ,0) (0,0, 8E ) (0,0,0,0,0) (0,0, 8E ,0,0) 

(0, -1,0) (0,0, 9E ) ( 9E ,0,0) (0,0,0,0,0) ( 9E ,0,0,0,0) 

(
2

1
,0,

2

1
 ) 

( 10E ,0, 10E ) (0, 102E ,0) (0,0,
2

10E
,

2

10E
,0) 

(0, 10E ,0,0,0) 

(0,
2

1
,

2

1
 ) 

(0, 11E , 11E ) ( 112E ,0,0) (0,
2

11E
,0,0,

2

11E
) 

( 11E ,0,0,0,0) 

 

(0, -1,0) ( 12E ,0,0) (0,0, 12E ) ( 12E ,0,0,0,0) (0,0,0,0,0) 

(0, 0,-1) (0, 13E ,0) ( 13E ,0,0) (0, 13E ,0,0,0) (0,0,0,0,0) 

(-1,0,0) (0,0, 14E ) (0, 14E ,0) (0,0, 14E ,0,0) (0,0,0,0,0) 

(
2

1
,0,

2

1
 ) 

(0, 15E ,0) 
(

2

15E
,0,

2

15E
) (0,

2

15E
,0,0,0) (0,0,

2

15E
,

2

15E
,0) 

(0,
2

1
,

2

1
 ) 

( 16E ,0,0) 
(0,

2

16E
,

2

16E
) (

2

16E
,0,0,0,0) (0,

2

16E
,0,0,

2

16E
) 

TABLE A1.  Sixteen plane waves with phase  = 0, which span the real part of the 

space of possible electromagnetic fields and field gradients.   
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