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Abstract

During my graduate work, I developed and applied optical and optogenetic methods to map

neuronal function across large regions of the brain with single-cell resolution using high-speed

optical sectioning.

I first introduce an all-optical assay to map neuronal function over large areas of brain tissue.

The spectral overlap of optogenetic actuators and reporters challenges their simultaneous use,

and optical scattering in brain tissue impedes high resolution fluorescence activity recordings.

Spectral crosstalk was minimized by combining an optimized variant, eTsChR, of the most blue-

shifted channelrhodopsin, with a nuclear-localized red-shifted Ca2+ indicator, H2B-jRGECO1a.

Wide-area optically sectioned imaging in tissue was achieved with a structured illumination tech-

nique that uses orthogonal codes to encode spatial information, named Hadamard microscopy.

The combination of eTsChR and H2B-jRGECO1a with Hadamard microscopy allowed wide-

area maps of neuronal function spanning cortex and striatum. These tools were applied to probe

the effects of antiepileptic drugs on neural excitability and the effects of AMPA and NMDA re-

ceptor blockers on functional connectivity.

Then I introduce a high-speed imaging extension for wide-area all-optical neurophysiology.

Hadamard microscopy achieves optical sectioning via differential modulation of in-focus and
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out-of-focus contributions to an image. Multiple wide-field camera images are analyzed to cre-

ate an image of the focal plane. The requirement for multiple camera frames per image entails a

loss of temporal resolution compared to conventional wide-field imaging. A new computational

structured illumination imaging scheme, compressed Hadamard imaging, achieved simultane-

ously high spatial and temporal resolution for optical sectioning of 3D samples with low-rank

dynamics (e.g. neurons labeled with fluorescent activity reporters). The technique was validated

with numerical simulations, and then illustrated with wide-area optically sectioned recordings of

membrane voltage dynamics in ex vivo mouse brain tissue and of calcium dynamics in live ze-

brafish brain. Finally, compressed Hadamard imaging enabled high-speed wide-area all-optical

neurophysiology mapping of acute mouse brain slices.

The combination of eTsChR with jRGECO allows concurrent stimulation and recording of

neuronal activity. CompressedHadamardmicroscopy enables high-speed, high resolution optical

sectioning in wide-area measurements of densely labeled fluorescent neural activity in scattering

brain tissue. Together, these tools provide a powerful capability for wide-area mapping of neu-

ronal excitability and functional connectivity in brain tissue.
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Observar sin pensar ॸ tan peli-

groso como pensar sin observar.

Santiago Ramón y Cajal 1

1
Introduction

Neuroscience research is accelerating with the adoption of optical methods to measure

and modify neuronal activity. Optical tools have been usually applied at high magnifi-

cation in small areas of tissue, and they have proved useful to uncover neurobiology mechanisms

in neurons, synapses, and neuronal circuits. The goal of my PhD work is to expand the toolbox

available for neuroscience research by creating protocols and methods for all-optical mapping of

neuronal function in large areas of brain tissue. Here I review the fundamental principles for this

application, and provide context and examples of related work.



1.1 Microscopy

While optical interrogation of biological tissues can be tuned to specific functional information

of interest, one general difficulty is to localize and distinguish signals to achieve spatial specificity.

Optical sectioning is the ability to discriminate signals as a function of depth, thereby achieving ax-

ial localization2. In this Section I review principles of biological optics as relevant to fluorescence

microscopy and optical sectioning.

1.1.1 Interaction of visible light with biological matter

Visible light travels through biological tissues until their energy is deposited by absorption, or

until photons are affected by scattering.

In uniformly opaque materials, light is absorbed with constant probability as it travels, result-

ing in transmitted intensity decaying exponentially with optical path length 𝑧 following Beer’s

law,

𝐼 (𝑧) = 𝐼0𝑒−𝜇𝑎𝑧

where 𝐼0 is the incident intensity and the absorption coefficient𝜇𝑎 is the inverse of the mean free

path, i.e. average distance traveled between interactions. Absorption by the electronic resonance

of chromophores at a broad peak of wavelengths causes transition to an electronic excited state

that can spontaneously lead to vibrational dissipation as heat or sound (photothermal or photoa-

coustic), to chemical reactions (photochemistry), or to luminiscence (photoluminiscence).
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Photoluminiscence can be further grouped in fluorescence, from singlet excited states, which is

fast (nanoseconds) and has a lower energy than absorbed (typically ∼10% lower); or phosphores-

cence, from tripled excited states where vibrational decay into forbidden states and inter-system

crossing leads to longer and more variable lifetimes (milliseconds to hours)3. The bulk effect of

many individual photons at low light intensity is the linear superposition of their individual ef-

fects. At high levels of intensity, multiple photons can deposit their combined energy, with a

probability dependent on the presence of each photon independently, and thus the effect is non-

linear and proportional to the intensity squared in the case of two interacting photons4.

Scattering or dispersion of visible light in tissue is mostly elastic, caused by refractive index

variations, by which photons change direction maintaining the same energy5.

Biological tissue is comprised of water (𝑛 = 1.33) solutions densely packed with macromole-

cules (e.g. sugar solution, 𝑛 ≈ 1.5), proteins (𝑛 ≈ 1.6), and lipids (𝑛 ≈ 1.45), creating refractive

inhomogeneities6. Biological structures come in a continuous range of sizes, e.g. membranes

(5 nm), microtubules (20 nm), vesicles (40 nm), cilia (200 nm), mitochondria (1 𝜇m), cell nuclei

(5𝜇m), cell bodies (10𝜇m), and beyond: cells will form all sorts and sizes of tissue structures that

vary in density and composition. Brain tissue mass includes about 80% water and 10% lipids7,

the lipids organized in a dense arrangement of intermingled neuronal membranes. Also, tissue

surface boundaries create refractive interfaces, and myelinated axon tracts are highly anisotropic

structures.

Thus photons that continue their unmodified trajectory through tissue (called ballistic pho-

tons) decrease exponentially with distance, by the compound effect of absorption and scattering
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in the law,

𝐼 (𝑧) = 𝐼0𝑒−(𝜇𝑎+𝜇𝑠 )𝑧

Scattered photons followunpredictable trajectories that hinder sharp light focusing. The angu-

lar scattering distribution depends on the size of scattering structures. In the limit of the particles

being of negligible size compared to the light wavelength, it reduces to Rayleigh scattering as light

diffracted by a point dipole. But for refractive index variations in the lengthscale of light, a rele-

vant result first obtained by Mie is the diffraction due to a dielectric sphere. This theory explains

the angular dependence of the scattering cross section with particle size for given wavelength and

dielectric properties.

A simplified description of tissue anisotropy is themean scattering angle cosine, 𝑔 , with which

a reduced scattering coefficient can be defined 𝜇eff = 𝜇𝑠(1 − 𝑔). The brain is a mostly forward-

scattering material, with 𝑔 ≈ 0.98, and its anisotropy can be modeled in practice by random

dielectric spheres of appropriate size distribution, for example 1 𝜇m dia. polystyrene beads in

water produce 𝑔 = 0.925 at 𝜆 = 561 nm9,10. Rule of thumb mean free path values for 𝜆 =

500 nm light in mouse brain tissue are 100 𝜇m for scattering, 1 mm for reduced scattering, 1 cm

for absorption; precise values are highly variable and depend on wavelength and tissue type (for

example inChapter 2, signal decay with depthwasmeasured inmouse brain cortical tissue at 561

nm obtaining 27 𝜇m in fresh tissue and 113 𝜇m in fixed tissue), and these variations have been

reviewed previously 11,5,8.

In photochemistry, an electronic excited state induced by light absorption in a chromophore
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can undergo electron transfer. This produces radicals, which can then go through other chemical

reactions. On the blue end of the visible spectrum, photochemistry via photo-induced electron

transfer is common, as in photosynthesis in plants. Other reactions induce breakage of a molecu-

lar bond (photolysis), as in synthesis of VitaminDmediated by∼300 nm light. Another relevant

photochemical reaction is photoisomerization, bywhich the structure of amolecule is rearranged.

This process mediates vision, where the chromophore retinal in rhodopsins undergoes photoi-

somerization to start the visual signaling cascade. In optogenetics, neurons are artificially made

light-sensitive leveraging the same process in channelrhodopsin. Photoisomerization also medi-

ates conversion of bilirubin in phototherapy to treat neonatal jaundice, and mediates blinking

and photobleaching of fluorophores 12.

Other interactions of light with biological tissue are less frequent. The energy of visible pho-

tons (3 eV for 𝜆 = 413 nm) is smaller than that required for ionization (at least∼4 eV for Cesium

atoms, and radiation is considered safe up to 10 eV 13), smaller than most biological tissue molec-

ular bond dissociation energies at life temperatures (except if tissue is already heated up) 14, and

smaller than required for a significant Compton scattering cross section: the Klein-Nishina rela-

tion describes the angular inelastic scattering cross-section as a function of photon energy, and for

visible light it vanishes, reducing to Thompson (i.e. elastic) scattering 15. Linear inelastic scatter-

ing still occurs in biological tissue with relatively small cross sections, through the Raman 16 and

Brillouin 17 effects.
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1.1.2 Contrast mechanisms for biological imaging

Transmission and reflectance can be used in bright and dark fieldmodes to generate contrast from

the density and refractive index of biological samples, but as they are nonspecific, these methods

are most valuable for structural characterization of a sample. Fluorescent contrast agents can be

detected using color filters, and allow highly specific labeling of structural or functional informa-

tion. Using continuous illumination, the linear superposition of single photons (1P) can be used

to form images of an area concurrently.

By using ultrashort-pulsed laser sources, the instantaneous intensity is dramatically increased,

allowing efficient multi-photon excitation. One common application is two-photon excitation

(2P) fluorescence microscopy 18, but more effects that arise with higher order nonlinearities of

electric susceptibility 19 through sum frequency or wave mixing are three-photon excitation20,

non-degenerate excitation21,22, second- and third- harmonic generation23,24, coherent anti-stokes

Raman spectroscopy 16; other effects that exploit the temporal localization of ultrashort pulses

include stimulated fluorescence25,26, stimulated Raman scattering27, fluorescence lifetime spec-

troscopy28,29, and transient absorption30.

In neuroscience, one- and two-photon fluorescencemicroscopies are extensively used for struc-

tural and functional imaging; refractive index contrast under oblique illumination is commonly

used to assist electrophysiology and asses neuronal health.
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1.1.3 Image formation and background

In widefield microscopy, light emitted by an illuminated sample volume is collected by the objec-

tive lens andprojected onto a camera (or the retina), where signals are collapsed to twodimensions

and form an image.

When samples are thick, one plane of the sample is focused on the detector while the rest of the

volume is defocused, giving rise to background that reduces the contrast and mixes signals from

out-of-focus planes2. This is a general problem in microscopy and is accentuated in thick turbid

samples, where scattering of light in the sample contributes to distortion of the images beyond

geometric defocusing31.

1.1.3.1 Linear optical systems

Adding incoherent sources of illumination into an optical system results in the sum of light in-

tensity composed at an image plane. Microscopes approximate the ideal condition that image

formation properties are constant across the field-of-view. These conditions allow modeling mi-

croscopes as systems linear in intensity and invariant in space, where the point spread function

(PSF, impulse response of the system) completely characterizes image formation32. In this frame-

work, the lens aperture is related by a 2D Fourier transform to the diffraction limited PSF that

determines the system resolution and the sharpness of focused image details33. The PSF can be

measured as the sensitivity to a particle of known unresolvable size. Diffraction theory predicts a
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limit to the optical resolution34 given by

𝜆
2NA

in the lateral direction, and

2𝜆
NA2

in the axial direction, where NA is the objective numerical aperture. Non-linear image forma-

tion techniques (not to be confused with non-linear excitation) allow fundamentally increasing

the resolution from the diffraction limit to the localization limit in single-molecule localization

microscopy (PALM/STORM)35,36 and stimulated emission depletion (STED) microscopy25.

1.1.3.2 Noise in optical measurements

The stochastic interaction between photons and detector materials gives rise to a Markovian pro-

cess in linear photon counting devices, resulting in counts of photons in an interval being random

with Poisson distribution having variance equal to counts (also called ‘shot’ noise)37. Thus the

signal-to-noise ratio (SNR) of a shot noise limited measurement of 𝑁 photoelectrons is √𝑁 .

Static measurements can accumulate signal to reach a desired SNR, but for fluorescence dynam-

ics, temporal resolution and total intensity constraints often result in shot-noise limited measure-

ments. Digital cameras also have a Gaussian-distributed electronic noise floor that becomes dom-

inant for optical signals under a nominal threshold per detector.
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1.1.3.3 Noise limited detection

Ultimately, time-constrained signals of interest become undetectable when the signal level de-

creases below the level of the noise inherent to optical detection. In tissue, light scattering de-

creases signal amplitudes quickly as a function depth, limiting the maximum imaging depth to

∼100 𝜇m for 1P imaging and to∼1 mm for 2P imaging.

1.1.4 Optical sectioning

Reducing the level of background to increase contrast has been a longstanding effort in mi-

croscopy. Applications in neuroscience require microscopes with simultaneously high spatial

resolution, background rejection, high temporal resolution, and large field of view. The micro-

scope should also have good light collection efficiency to make optimal use of the limited photon

budget. All microscopy techniques achieve a compromise of these goals.

Inwidefield epifluorescencemicroscopy, 1P excitation and emission of fluorescence of a sample

area travel through the objective that acts as condenser and collector. In this format, excitation

and emissionpaths are separated by a dichroicmirror and excitation and emission color filters, and

images are detected by a digital camera or by direct eye observation. This approach can achieve

high spatial and temporal resolution, and large field of view, but because all depths of the sample

are illuminated at once, background signals defocus and mix onto the detector.

To achieve optical sectioning in 3D scattering samples, one must address two physically dis-

tinct processes. First, out-of-focus fluorescence leads to a background haze, even in samples that
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are refractively homogeneous. Second, light scattering off refractive inhomogeneities degrades

the point-spread function, preventing formation of a diffraction-limited excitation focus within

the sample, and for a fluorescent point-source within the sample, preventing formation of a

diffraction-limited image in the image plane.

Optical sectioningmethods differ fundamentally onwhether theyphysically reject background

light, or they subtract it in post-processing.

1.1.4.1 Physical background rejection

The confocal microscope focuses 1P excitation onto a spot in the sample, light emitted from that

spot is imaged onto a pinhole, and light transmitted by the pinhole is collected on a single element

photodetector. Images are formed by raster scanning the sample. The confocality of spot and

pinhole allows excluding defocused or scattered light from the detector38.

Two photon (2P) fluorescencemicroscopy, like confocal, produces images from a focused spot

by raster scanning the sample, but a high peak intensity source (typically a Ti:Sapph near-infrared

laser with ∼120 fs pulse duration, 80 MHz repetition rate, and ∼100 mW power) is used for effi-

cient 2P excitation. The nonlinear excitation proportional to the intensity squared is confined to

an axially localized volume, generating no fluorescence signals from outside the focal spot. Thus

all collected emission is focused on the photodetector with no pinhole to maximize sensitivity,

and eliminating signal loss due to emission scattering in turbid tissue39.

Two photon and confocal microscopies provide robust optical sectioning2,18. However as

point scanning techniques they encounter upper limits on the number of pixels recorded per sec-
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ond. In a typical two-photon system with an 80 MHz pulsed laser, the maximum pixel-rate is

8 × 107/s, 5-fold lower than in an sCMOS camera. Ultimately, serial scanning is limited at the

order of this rate by the fluorescence lifetime, in the order of nanoseconds40. Typically in two

photon microscopy one dwells for several laser pulses per pixel, so the pixel-rate is correspond-

ingly reduced. In one-photon confocal microscopy, as the scan speed increases, the illumination

intensity must increase proportionally to maintain the per-pixel photon count rate. Eventually

nonlinear damage processes limit themaximum illumination intensity. These limitations onpixel

bandwidth impose fundamental tradeoffs in spatial resolution, temporal resolution and field of

view.

Spinning-disk confocal microscopy (SDCM) is a parallel version of the confocal microscopy

in which a Nipkow disk with an array of pinholes filters light from the sample illuminated with

a corresponding array of spots. Synchronized rotation of the disk allows densely filling a camera

detector with signal from the focal plane at a fast framerate41.

Commercially available SDCM systems are not compatible with low-magnification, highNA

objectives because the SDCM systems lack sufficient etendue, i.e. they cannot accommodate the

full range of optical rays transmitted by the objective.

Selective plane illuminationmicroscopy (SPIM) refers to several variations in which the excita-

tion and collection of fluorescence travel through non-overlapping paths to reduce background

fluorescence42,43. The SPIM geometry works best with samples accessible from multiple direc-

tions, such as zebrafish, Drosophila embryos, or cleared (transparent) whole mouse brains44,45.

SPIM is not optimal for wide-field imaging of planar or near-planar samples, such as rodent brain
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in slice or in vivo, due to the requirement for optical access from multiple non-overlapping sets

of angles. In one alternative configuration, non-overlapping excitation and collection paths are

combined through a single microscope objective46,47. This approach divides the numerical aper-

ture into separate components for excitation and illumination, decreasing the spatial resolution

and light collection efficiency below the optical specifications of the objective.

1.1.4.2 Computational background rejection

Computational optical sectioning methods use multiple pictures of the sample acquired with

different illumination patterns to calculate a background-free image of the focal plane. These

methods are implemented or readily scalable for high-speed large-area imaging configuration. In

structured illuminationmicroscopy (SIM), stripe patterns are projected in various phases and ori-

entations and then computationally demodulated48, however these linear patterns suffer from

scattering when projected into thick turbid tissue (>15 𝜇m), resulting in artifacts present in re-

constructed images49,50. SIM has been shown to perform correctly in samples limited to thin

tissue, single cell layers, or thick transparent 3D samples51.

Random illumination patterns have also been used to distinguish in-plane signals from back-

ground in tissue samples: In HiLo microscopy, one image under uniform illumination and one

image under structured illumination are sufficient to calculate an optical section52. The method

is insensitive to the precise pattern used for the structured illumination, which can be random or

not53–55.

In aperture correlation microscopy, illumination goes through a mask that is imaged onto the
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sample. The light emitted from the sample is imaged back to the mask, from where the transmis-

sion is imaged onto a camera, and the reflection is imaged onto another camera. Patterned light

from the focal plane is only present in the transmitted image, while background and scattering

are present in both. These two images are scaled and subtracted to remove the background, and

multiple images with different synchronized patterns are required for uniform coverage56,57.

Methods based on a randompattern donot require foreknowledge of the illumination pattern,

and do not use it in the analysis. As a result, they cannot distinguish emitted scattered photons

from ballistic ones. By selecting image components with high spatial frequencies, these methods

might spuriously reject large fluorescent structures in the focal plane.

The fastest computational optical sectioning methods use a single image pair per optical sec-

tion, but are further prone to artifacts derived from using spatially non-uniform total illumina-

tion. Rotation of a mask disk, or cycling through multiple mask patterns allow averaging to re-

mediate this problem, but this degrades temporal resolution.

InChapter 2, I introduce a computational optical sectioning strategy for wide-area all-optical

neurophysiology, named Hadamard microscopy, that uses orthogonal encoding of illumination

patterns forneighboring sample locations, improving the axial sectioning compared toother struc-

tured illumination strategies. Chapter 3 further extends thismethodwith a compressedmeasure-

ment strategy that matches the fastest temporal resolution of existing optical sectioning methods

while keeping the improved resolution.
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1.1.4.3 Noise in optical sectioning

To reduce contaminating background from thick samples, optical sectioningmethods reject defo-

cused light, obtaining images of the focal plane only. Physical rejection methods avoid detecting

background, while computational rejectionmethods subtract background in post-processing. Be-

cause the noise is independent in every realization, when background is subtracted, the noise from

its optical detection still accumulates. Thus computational methods can remove the background

but cannot get rid of the noise associated with its detection58.

1.2 Molecular tools for all-optical neurophysiology

Modern neuroscience uses optical tools for neuronal activity recording and perturbation. This

represents a fundamental advance in throughput and parallelism compared to classical electro-

physiology using electrodes for point measurements. During my PhD I further developed op-

togenetic protocols for all-optical neurophysiology. Here I introduce relevant biophysical and

molecular principles, and review recent advances in this area.

1.2.1 Optical recording of neuronal activity

1.2.1.1 Neurophysiology

Lipidic cell membranes are impermeable to charged solutes, enabling sustained differences in con-

centration ofmolecules and ions between cellular compartments to create specialized biochemical

environments. The aggregate concentration gradients of charged species establish an electrical po-
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tential acrossmembranes, which act as an electrical insulator analogous to a parallel plate capacitor.

Thus membrane voltage interacts with concentration gradients and is determinant to the flow

of charged solutes, further regulated by channel and transporter proteins embedded across lipid

membranes. The electrical potential across a membrane is related to each species, concentration

gradient and charge by the Nernst equation.

𝐸ion =
𝑅𝑇
𝑧𝐹 ln

[Ion]in
[Ion]out

≈ 62.5
𝑧 log10

[Ion]in
[Ion]out

(mV)

Where 𝐸ion is the equilibrium potential, [Ion]in and [Ion]out are the respective ionic concen-

trations,𝑅 is the ideal gas constant, 𝑇 is temperature in Kelvin, and 𝐹 is the Faraday constant.

Accounting for multiple ionic species, the Goldman equation relates them to the potential of

a physiological membrane in equilibrium. Many cells are generally not in equilibrium, includ-

ing cardiomyocytes and neurons. Voltage-dependent ion-specific channels that dynamically reg-

ulate ionic flow give rise to excitable membrane properties, in which the flow of Sodium (Na+),

Potassium (K+), Calcium (Ca2+), Chloride (Cl−), and other charged species perform a coupled

oscillation governed by nonlinear dynamics, described by Hodgkin and Huxley59:

𝐼 = 𝐶𝑚
d𝑉𝑚
d𝑡 +∑𝑔𝑖 (𝑉𝑚 − 𝑉𝑖 )

Where 𝐼 is the total current across the membrane,𝐶𝑚 is the membrane capacitance, 𝑉𝑚 is the

membranepotential, 𝑔𝑖 is the conductance for a particular ionic species (more generally𝑔𝑖 (𝑡 , 𝑉𝑚),

a nonlinear function of time andmembrane potential), and 𝑉𝑖 is the respective reversal potential.
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These nonlinear oscillations give rise to action potentials, discrete excitation events that fur-

ther compartmentalize cellular biochemical environments in time. The cardiac action potential

synchronizes cardiomyocytes and drives its muscular contraction, one heartbeat after another

throughout the whole life. Neuronal action potentials encode millisecond timescale information

in the nervous system and drive intracellular Ca2+ increase thatmediates the release of neurotrans-

mitters at synaptic terminals. Postsynaptic neurotransmitter receptors activate ionic currents, fur-

ther triggering downstream action potentials and computation.

The traditional method for electrophysiologic measurements –patch clamp– consists of con-

trolled breaking of the cellularmembrane using a glassmicropipette to access its intracellular space

with an electrode, enabling probing the membrane with electric perturbations, and yielding high

bandwidth amplified recordings of the current and voltage across the membrane60. Patch clamp

recordings can demonstrate the stochastic gating of single ion channel currents61, the quantal na-

ture of granule fusion62 and synaptic vesicles release63, and mechanisms of short- and long-term

synaptic plasticity64.

1.2.1.2 Genetically encoded Calcium indicators

Genetic targeting and expression of exogenous proteins is a fundamental tool that has advanced

biomedical research. These techniques insert a genetic sequence into the genome of a cell, and

then native cellular processes translate and transcribe this code into a protein executing some bi-

ological function. Adaptation of a natural green fluorescent protein (GFP) from jellyfish for ex-

pression in other organisms allowed specific detection of genetically encoded effector signals using
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fluorescence microscopes65. The Ca2+ concentration indicator protein GCaMP was created by

fusing GFP to calmodulin, a Ca2+-binding protein native to eukaryotic cells66. Further genetic

engineering by mutating the genetic code of these proteins has allowed optimization, thus giving

rise to variants with increased quantum efficiency, brightness, multiple colors, and Ca2+-binding

affinity67–70.

The Ca2+ concentration is a fundamental signal in cell biology71, but importantly in neurons

it mediates the signal transduction of action potentials and the release of neurotransmitters. Neu-

ronal firing of action potentials increases the intracellular Ca2+ concentration, that accumulates

and plateauswith sustained firing. Recent advances have optimized the brightness, sensitivity and

contrast of Ca2+ reporters, and have created red-shifted variants that enable their spectral combi-

nations with other colors.

GECIs have proved useful and are extensively used in neuroscience, however using a Ca2+ re-

porter as a marker of neuronal activity has limitations72. Subthreshold changes in membrane

potential and inhibitory inputs are not reflected by Ca2+ concentration. Ca2+ concentration can

change as result of cellular signaling or Ca2+ buffering not related to neuronal activity. The inten-

sity of a Ca2+ reporter doesn’t change linearly with neuronal activity, saturating upon sustained

firing. Finally, the response time of Ca2+ concentration is not sufficient to register individual ac-

tion potentials inmost neuronal firing conditions. Thus spike timing or number of spikes cannot

be straightforwardly inferred from fluorescence73.

Currently, Ca2+ imaging has been highly optimized for in vivo behavioral experiments in mul-

tiple animal models. Using 1P excitation, new microscopy techniques have recorded the whole
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animal neural activity in the worm Caenorhabditॹ elegans, and the whole brain in zebrafish74,75.

To image the mammalian brain at depth, tissue scattering prevents 1P imaging, which has led to

optimization of 2P and 3P excitation strategies for large scale and deepCa2+ imaging ofmice. Cur-

rently, implementations exist for random access over large fields of view76 and for massively par-

allel volumetric imaging77. Multiple optical and computational alternatives are each best suited

for particular biological questions78.

1.2.1.3 Genetically encoded voltage indicators

Precise neuronal activity information is encoded in themembrane voltage, and the effort towards

its optical recording has been long-standing79 but hindered by multiple challenges, the main one

being that actionpotentials canbe as short as amillisecond. Thus recording strategies need to keep

a high sampling rate (typically 1 kHz) against limited availability of optical signals and their inher-

ent detection noise. Initial efforts focused on intrinsic sources ofmembrane potential contrast, in-

cluding mechanical deformations, and changes in refractive index or birefringence. Intrinsic con-

trast mechanisms however cannot be targeted to record from specific neuronal subpopulations

within tissue. Some small dye molecules provide bright exogenous voltage-dependent contrast80,

but are also phototoxic in addition to being non-specific. To enable genetic targeting of voltage

reporters, three mechanisms of protein voltage sensing have been studied: 1) ion channels and

2) voltage sensitive phosphatases that have potential-dependent conformational changes, and 3)

rhodopsin chromophores with potential-dependent protonation. Rhodopsin-basedGEVIs have

been applied to report action potentials and subthreshold transients in vivo in combination with
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optogenetic actuators81–83. Nonetheless, GEVI activity recording is fundamentally more chal-

lenging than GECI activity recording because 1) voltage transients are 2-3 orders of magnitude

faster than Ca2+ transients, 2) membrane-localized signals are sparsely and irregularly distributed

in volume, and are difficult to distinguish amongneurons since 95%of theirmembrane is optically

unresolvable neuropil84. Presently, GEVIs are not as fast, as sensitive, or as bright as one would

desire. In particular, fast and sensitive Arch-based sensors are∼50 times dimmer than EGFP, and

bright VSD-based sensors are either ∼10 times slower or ∼10-fold less sensitive than Arch-based

reporters85.

1.2.1.4 Continued development of physiology reporters

The development of functional fluorescent indicators has expanded their applicability to many

other physiological parameters beyond Ca2+ and voltage, including pH and vesicle release86,

cAMP87, ADP/ATP88, neurotransmitter concentration89–92, and membrane tension93. Recent

advances also enable specific subcellular localization including to organelles, the neuron soma,

dendrites, and spines. Nonlinear optical photoactivation allows intersectional expression or

functionalization of reporters. Protein engineering and directed evolution are being extensively

used to optimize all these desired functional properties. Ongoing work advances towards activity

integrators to report past neuronal activity and for replay of neuronal activity94.
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1.2.2 Optogenetic neural manipulation

Another transformative advance in contemporary neuroscience is to deliver genetically targeted,

light-triggered perturbations of neuronal activity. Channelrhodopsin is a light-sensitive ion chan-

nel originally found in algae to control light driven locomotion, in which photon absorption by

the endogenous chromophore retinal inside channelrhodopsin triggers a conformational change

opening a conductance to ionic flow and leading to membrane depolarization95. Its expression

in other organisms allows optical control of neural activity by triggering action potentials upon

light-triggered neuronal depolarization in genetically targeted neuronal subpopulations. A num-

ber of channelrhodopsin variants have been optimized for functional properties including pho-

tocurrent, sensitivity, kinetics, and expression patterns, and complementary strategies have been

developed to stimulate neuronal inhibition and ion-specific conductances96.

This genetic specificity of optogenetic perturbations enables causal investigation of neurobio-

logical mechanisms and animal behaviors. The classic behavioral optogenetic stimulation exper-

iment defines a behavior-associated neuronal subpopulation by expression of a genetic marker.

Optogenetic actuator expression driven by the marker is then used in separate experiments to

specifically trigger artificial 1) stimulation and 2) silencing of the behavior, thereby verifying the

neuronal subpopulation is 1) sufficient and 2) necessary for the behavior97. Alternatively, opto-

genetic perturbation is performed in an array of areas to causally map behavioral perturbations98.

The revolutionary advances enabled during the first decade of optogenetics used 1P excitation

and were largely devoid of precise spatial localization; their significance rested on the genetic tar-
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geting of neuronal subpopulations. Only recently, high spatiotemporal precision was added to

the toolbox of optogenetic stimulation. Compared to 2P Ca2+ imaging, 2P channelrhodopsin

activation is fundamentally more difficult, owing to the sparse localization of the membrane pro-

teins in tissue. Scanning of a 2P excitation beam can open channels along a contour or spiral, but

then the low duty cycle of excitation on each point demands higher photocurrents per channel

protein to achieve threshold levels of neuronal activation. Single cell targeting is challenged by the

dense vicinity of neurons in tissue.

Optimization of optical techniques and molecular tools have advanced temporally precise sin-

gle cell stimulation99, holographic excitation 100, optogenetic inhibition 101, and spectral compat-

ibility 102. The library of opsins for precise stimulation is rapidly expanding 103.

Present strategies that optimize targeted optogenetic stimulation incorporate subcellular local-

ization of the channelrhodopsin to the neuronal soma, mutations to enhance channelrhodopsin

photocurrents, and lower repetiton rate lasers that allow a higher peak intensity at a set power

level.

1.2.3 Simultaneous optical stimulation and recording

Activity recordings and optogenetic stimulation have both been independently valuable and full-

fil complementary roles98,104. However, neurophysiology* can be further explored by simulta-

neously combining optical perturbation and measurement of activity, more than by using either

*Neurophysiology refers generally to neuronal biology, whereas electrophysiology refers more specifi-
cally to themembrane potential biology. In the context of optical neural activity recordings, the distinction
applies to using Ca2+ or voltage indicators: while both probe cell biology, Ca2+ does not directly probe
membrane potential.
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approach separately. Simultaneous manipulation of inputs and measurement of outputs allow

characterization of systems to build simplified models through experimental testing of responses

to controlled inputs. All-opticalmanipulation allows electrophysiological characterizationof neu-

ral circuits under different neuronal depolarization conditions. Finally, closed loop all-optical

neural interfaces enable study under dynamic control conditions.

1.2.3.1 All-optical neurophysiology

The fundamental difficulty to implement simultaneous all-optical neurophysiology is the spec-

tral overlap of broad-peaked optogenetic actuators and reporters. The common sensitivity to

wavelengths of light hinders the ability tomeasure activity without inducing optogenetic stimula-

tion, and also can introduce stimulation-induced artifacts in activity recordings. Other important

aspects are 1) the design of question-optimized optical and computation systems with technical

capability for precise localization in space and in time of both stimulation and recording, which

can be especially challenging for in vivo studies, 2) the dynamics of actuator and reporter activa-

tion and deactivation times need to be fast enough to probe stimulation or activity regimes of

interest, 3) joint packaging of constructs for actuator and reporter in a single virus restricts their

coding sequence length, 4) expression of actuator and reporter in specific neuronal populations

requires custom targeting strategies, and 4) large-scale optical parallelism requires special strategies

for individual cell perturbation and recording 105.

Recent progress has installed all-optical neurophysiology as an available tool for live mice be-

havioral studies. Using 1P excitation, lightweight microscopes allow studies on freely moving an-
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imals 106. In head fixed animals, single-cell targeted 2P-excitation of stimulation and Ca2+ record-

ing has been applied 107–109 and further optimized for parallel 3D precise localization 110–113. In

these implementations, spectral separation and crosstalk with Ca2+ reporters remains a challenge:

channelrhodopsin is efficiently activated by GCaMP excitation wavelengths. Thus strategies use

either red-shifted opsins, or red-shifted Ca2+ reporters. In either case, imaging excitation intensi-

ties operate close to the limit of channelrhodopsin activation. The high excitation power required

for parallel 2P excitation limits these methods to < 100 cells concurrently to avoid excessive brain

heating 114,115.

For all-optical electrophysiology, Optopatch81,82 combines an infrared rhodopsin-based volt-

age reporter with blue-excited channelrhodopsins, achieving good spectral separation, and en-

abling in vitro 116 and in vivo83,117 crosstalk-free temporally precise studies of subthreshold mem-

brane potential in single neurons using 1P excitation.

A further technical advance is the ability to close the loop of all optical stimulation and record-

ing 118,119, which enables on-line feedback of signals into the system under study.

All-optical neurophysiology has been highly optimized for behavioral sudies in awake mice.

However, ex vivo experiments in acute brain slices continue to be an essential tool to access any

brain region and probe neuronal microcircuits in their native tissue environment.

Expanding the scale of all-optical neurophysiology for large tissue areas holds the promise to

parallelize slice neurophysiology and enable new, area-based applications, e.g. to find rare cell

populations, to characterize subtle gradients undetectable in small areas, and to measure many

cells or areas of the brain in parallel matched conditions.
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Chapters 2 and 3 describe a new strategy to stimulate (with a common stimulus) and record

(with single cell resolution) thousands of cells in parallel from large areas of brain tissue in acute

brain slices.

1.2.4 Systems modeling of all-optical neurophysiology

As in the analysis of electrical systems, a natural characterization of neurobiologicalmodel systems

–and of experiments to test them– is according to how many inputs and outputs do they have.

Single or Multiple Input and Output give rise to four categories: SISO, SIMO, MISO, MIMO.

Many classical electrophysiology experiments fit appropriately into these categories depending on

how many patch electrodes are used, most commonly using one perturbation electrode and one

(SISO) or multiple readouts (SIMO).

In systems neuroscience, classical engineering modeling is an essential tool to study neural cir-

cuits 120,118. In the context of all-optical neurophysiology tools, several factors merit revisiting this

model-building classification: 1) even small neurobiological models are fundamentally complex

because they are highly nonlinear and with memory, 2) understanding the brain and behavioral

functions will likely require complex models, 3) the ability to probe genetically labeled neuronal

subpopulations allows independent input/output experiments to build complex unified models,

4) varied optogenetic expression strategies give rise to different vistas to probe a common system.

All-optical neurophysiology experiments probe neuronal subpopulations, independently de-

fined for stimulation and recording. Neuron groups under study are defined by intersectional

combination of A1) neurons expressing a genetic marker, A2) neurons defined by spatial prop-
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erties, A3) neurons defined by functional properties (such as a synaptic connection), A4) sparse

inclusion of neurons. Spatial properties are notably flexible and can even be defined in transient

developmental stages, they includeA2.1) localization of the neuron soma, A2.2) projection target,

A2.3) dendrite innervation area, A2.4) migration origin. Similarly, functional definition includes

neurons having amonosynaptic commonpopulationA3.1) downstream, andA3.2) upstream, or

A3.3) a particular firing pattern. Within those defined populations, perturbations can target B1)

a single cell or B2) multiple cells. If multiple cells are stimulated, this can be further classified as

B2.1) a targeted region lacking single-cell resolution, B2.2) sparsely defined neuronal ensembles,

B2.3) all cells in the population.

Analogous classification can be applied to the target population whose activity is being

recorded, resulting in C1 single cell, C2.1 regional, C2.2 ensemble, C2.3 universal. Furthermore,

B2 can be specified to be one perturbation acting on a group of cells, individually addressed

concurrent perturbations to multiple cells, or spatially patterned perturbation lacking single cell

resolution; The entire C classification can separate in parallel multiple distinct recordings, or in

mixed or bucket recordings that can be unmixed in post-processing.

Broad classes of applications stand out by the definition of their target populations under

study. Targeting the same population with optogenetic stimulation and readout allows probing

the intrinsic excitability of neurons, and allows driving neurons to different states to probe their

differential modulation by sensory inputs. Targeting actuator and reporter to defined and mutu-

ally exclusive populations for allows testing the functional connectivty between these neuronal

subpopulations.
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Finally, systems neuroscience is concerned with understanding neurological mechanisms that

translate sensory input to behavioral output. For behavioral experiments, a similar and indepen-

dent classification of models can be followed, considering that a general model for an organism

will include as a subset a neurophysiological model under study. Thus the organism model can

have zero, single, or multiple sensory inputs, and zero, single, or multiple behavioral outputs

(SISO/MIMO). The neurophysiological model could interface with inputs, outputs or internal

states of the organism model.

For example, an experimental model of cortical neural network organization inmice 113 uses vi-

sual stimulation, optically perturbs activity in multiple singly targeted cells, and optically records

activity from multiple cells of the same cell population concurrently. There is no monitoring of

behavioral output. The organism model interface is SIZO (single input, zero outputs), interact-

ing with a MIMO neurobiologic model. The all-optical interface could be classified as A1, B1

sequential, C1 parallel.

In another example, an experimental model of attention in mice 117 incorporates mechanical

whisker stimulation and air puffs to the face, optically perturbs multiple regional sites of optoge-

netic stimulation toL1 interneurons, optically records frommultipleL1 interneuronsunder study

individually at different times, and monitors pupillary diameter and licking frequency, modeling

an organismicMIMO system, including a neurophysiologicalMIMO system, further classified as

A1/A2.1, B2.1 concurrent, C1 sequential.

Whereas in regular and optogenetic-assisted classical electrophysiology SISO, SIMO and

MISO probing has resulted in the bulk of advances due to the individual nature of patch-clamp
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probing, optical approaches started from bulk nonspecific probing, transitioning to single cell

resolution after further technology advances. The all-optical SISO case is technically challeng-

ing and implementations so far provide complementary information, but do not replace SISO

patch-clamp experiments. The broad opportunity of all-optical approaches is the fundamental

parallelism that can be achieved, and one of challenge is to design experiments that appropriately

exploit these advantages for particular biological questions.
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The brain ॹ a tissue. It ॹ a complicated, intricately wo-

ven tissue, like nothing else we know of in the universe.

David H. Hubel 121

2
Wide-area all-optical neurophysiology

in acute brain slices

Optical tools for simultaneous perturbation and measurement of neural activity open

the possibility of mapping neural function over wide areas of brain tissue. However,

spectral overlap of actuators and reporters presents a challenge for their simultaneous use, and

optical scattering and out-of-focus fluorescence in tissue degrade resolution. To minimize opti-

cal crosstalk, we combined an optimized variant (eTsChR) of the most blue-shifted channelrhod-



opsin reported to-date with a nuclear-localized red-shifted Ca2+ indicator, H2B-jRGECO1a. To

perform wide-area optically sectioned imaging in tissue, we designed a structured illumination

technique that usesHadamardmatrices to encode spatial information. By combining thesemolec-

ular and optical approaches wemadewide-area functional maps in acute brain slices frommice of

both sexes. The maps spanned cortex and striatum and probed the effects of antiepileptic drugs

on neural excitability and on the effects of AMPA and NMDA receptor blockers on functional

connectivity. Together, these tools provide a powerful capability for wide-area mapping of neu-

ronal excitability and functional connectivity in acute brain slices.

Significance Statement

A new technique for simultaneous optogenetic stimulation and calcium imaging across wide ar-

eas of brain slice enables high-throughput mapping of neuronal excitability and synaptic trans-

mission.

2.1 Introduction

All-optical neurophysiology (AON)—simultaneous optical stimulation and optical readout of

neural activity—provides a promising approach to mapping neural excitability and functional

connectivity across wide regions of brain tissue 122,100. Recent advances in two-photon (2P) cal-

cium imagingAON in vivohave enabledmeasurement of neuronal population activitywhile stim-

ulating or inhibiting up to∼100 near-surface neurons in small cortical regions99,100,112. However,
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most of the intact rodent brain remains inaccessible to optical microscopy, and one would ide-

ally like to perform AON simultaneously on many thousands of neurons across multiple brain

regions to map spatial variations in function or to detect rare sub-populations.

Acute brain slices in principle enable wide-area opticalmapping across any brain region. While

slicing cuts many long-range connections, the procedure is commonly used to investigate the

molecular makeup, electrophysiological properties, and local microcircuitry of the component

neurons 123. Wide-area AON in acute slices would enable several types of new applications. Phar-

macological studies with tool compounds could probe the distribution and functional roles of

receptors or channels in the tissue, e.g. to characterize the nature of synaptic connections between

specific brain regions; or to discover cell populations that expresses a receptor for an orphan lig-

and 124–127. Tests with candidate drugs could probe the distribution and functional consequences

of drug action. Further potential applications include probing the response of brain tissue to phys-

ical or chemical perturbations, e.g. to map responses to changes in nutrients, hormones, oxygen,

or temperature. In all these applications, a large field of view (FOV) for simultaneous large-area

imaging is essential because the sample responsemight adapt or degrade, and physiologymay vary

as a function of time post perturbation.

Brain slices typically show little spontaneous activity and obviously lack sensory inputs, so opti-

calmapping inbrain slices requires ameans to evoke activity. Optogenetic stimulation candirectly

evoke activity in the measured neurons, or can activate axon terminals—even when the axons

have been severed from the cell bodies—and evoke postsynaptic responses 128. Optical readouts of

evoked response could reveal the spatial structure of intrinsic neuronal excitability, of functional
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connectivity, or of local microcircuit dynamics, and molecular or physical influences thereon.

The optical requirements of wide-area AON in brain slice differ from in vivo, suggesting that a

distinct approach could bewarranted. In brain slice there is a benefit to having a very wide field of

view to probemany neurons and brain regions simultaneously. Optical sectioning is important to

distinguish in-focus cells from background, but imaging deep (> 100𝜇m) into the preparation is

less important than in vivo because the plane of the slice can expose any brain structure of interest.

Onemaywish to stimulatemany thousands of cells simultaneously, a task beyond the capabilities

of current 2P stimulation techniques. If one treats cells as units, the spatial resolution must be

sufficient to resolve single cells, but need not resolve fine sub-cellular structures. Time resolution

must be sufficient to resolve dynamics slice wide, typically < 200 ms for Ca2+ imaging. These

factors, discussed in detail below, suggest that 1P stimulation and imaging may be preferable over

the 2P approaches which have been optimized for in vivo use. To achieve 1P AON in brain slice

one must (a) identify an actuator/reporter pair with good photostability and minimal optical

crosstalk under 1P illumination, and (b) implement a 1P optically sectioned wide-area imaging

scheme. Here we combine molecular and optical engineering to address these challenges.

Red-shifted channelrhodopsins have been combined with a GCaMP Ca2+ indicator for 2P

AON in vivo 107–109, but 1P GCaMP excitation causes spurious channelrhodopsin excitation.

Lower optical crosstalk is achieved by pairing a blue-shifted channelrhodopsin with a red-shifted

reporter82. Red genetically encoded Ca2+ indicators (RGECIs) now offer good sensitivity, but

their combination with optogenetic stimulation has been hampered by blue-light induced pho-

toswitching of the mApple-based chromophores used in the most sensitive RGECIs69,129,70.
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Furthermore, blue channelrhodopsins such as ChR2(H134R) retained some excitation at the yel-

low (561 nm) wavelengths used to excite RGECIs, introducing crosstalk of the imaging light into

the stimulation channel. A truly orthogonal 1P actuator/RGECI reporter pair has not previously

been reported.

TsChR, derived from Tetraselmis striata 130, is the most blue-shifted channelrhodopsin re-

ported to-date, but its initial characterization yielded a poor photocurrent. To our knowledge,

TsChR has not previously been used in any optogenetic experiments. Here we show that a ver-

sion with improved trafficking, eTsChR, drives robust spiking in cultured neurons and in tissue.

Combination of eTsChR with a nuclear-localized red-shifted Ca2+ reporter, H2B-jRGECO1a,

achieved 1-photon AON in cultured neurons and in slice. The blue light used to activate the

eTsChRwas dim enough to avoid jRGECO1a photoswitching, and the yellow light used to excite

jRGECO1a did not spuriously activate the eTsChR.

On the imaging front, 1P structured illuminationmicroscopy (SIM) techniques can achieve op-

tical sectioning in tissue58. We developed a generalized SIM technique based onHadamard-Walsh

encoding and implemented it in a mesoscope imaging system. Hadamard microscopy provides

better rejection of out-of-plane fluorescence than do other SIM techniques and offers the ability

to make systematic tradeoffs between background rejection and time resolution.

By applying 1P optogenetic stimulation and Hadamard microscopy to acute slices expressing

eTsChR and H2B-jRGECO1a, we obtained simultaneous functional characterization of > 6,000

neurons, spreadover a region2.3 x 2.3mmwith 5.6Hz time resolution. Mapsof optically induced

activity highlighted distinct cortical layers, which otherwise appeared homogeneous in their flu-
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orescence. We used the AON system to map with cellular resolution the effects of anti-epileptic

drugs on neural excitability, and to study cortico-cortico and cortico-striatal functional connec-

tivity. Finally, we show that with an improvement to the algorithm based on compressed sensing,

the imaging speed can be increased to 33 Hz as described in Chapter 3. The combined molecu-

lar and optical tools provide a powerful system for wide-area investigations of neural function in

brain tissue.

2.2 Materials and methods

2.2.1 DNA constructs

R-CaMP2 was a gift from Haruhiko Bito. TsChR was a gift from Ed Boyden. jRGECO1a and

jRCAMP1a were obtained from Addgene (Plasmids #61563 and #61562). All RGECIs were

cloned between the BamHI and EcoRI sites of the backbone from FCK-Arch-GFP (Addgene

Plasmid #22217) for expression in cultured neurons and for lentiviral production. For photo-

physical characterization, RGECIs were also cloned into an analog of the FCK vector replacing

the CaMKIIα promoter with a CAG promoter, a configuration we refer to as FCAG. The jR-

CaMP1a and jRGECO1a constructs included the nuclear export sequences found in the original

publication70. For nuclear localization, the nuclear export sequence of jRGECO1a was replaced

with an H2B tag, and cloned into an AAV-hSyn-DO Cre-off vector. TsChR, including an N-

terminal Kir2.1 trafficking sequence followed by a GFP fluorescent tag, was cloned into FCK

and into an AAV expression vector under control of the human synapsin promoter (AAV-hSyn).
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CheRiff-TS-GFP (Addgene Plasmid # 51693) was cloned into anAAV-CAG-DIO expression vec-

tor. FCK-ChR2(H134R)-GFPwas used as a reference for eTsChR characterization. FCK-VSV-G

(Addgene Plasmid #8454) and psPAX2 (Addgene Plasmid #12260) were used in lentiviral pro-

duction. pUC19 (NEB #N3041) was used as a diluent in calcium phosphate transfections.

2.2.2 Cell culture and gene expression

2.2.2.1 HEK cell culture and gene expression

Photophysical measurements of RGECIs were performed inHEK293T cells (ATCCCRL-11268)

cultured as previously described82. Cells were grown at 37 ∘C, 5% CO2 in DMEM containing

10%FBS (Life Technologies 10082-147) and 50U/mLpenicillin-streptomycin (Life Technologies

15060-063). Cells were split with trypsin-EDTA (Life Technologies 25300054) every 2-3 days

and used before passage 25. For gene delivery, cells were grown to 70% confluence in 24 well

plates or 35 mm plastic dishes. 200 ng (for 24 well plates) or 400 ng (for 35 mm plastic dishes) of

FCAG-RGECI DNA was transfected using TransIT-293 (Mirus 2705) following manufacturer

instructions. After 24 hours, cells were split onto Matrigel (Fisher Scientific 356234) coated glass

bottom plates (In Vitro Scientific D35-14-1.5-N) and imaged 24 hours later.

2.2.2.2 Low titer lentivirus production

HEK293T cells were cultured as in the previous section, except that cells were split daily and the

cell density was always maintained between 30 and 70%. Prior to P11, cells were split onto gelatin
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coated plates, prepared by incubating 15 cm plastic dishes (Nunc) for 20 minutes at room tem-

perature with 10 mL EmbryoMax 0.1% Gelatin solution (Millipore FS-006-B) and aspirating to

dryness. 10 cm dishes were also used, and all amounts were scaled to the smaller surface area. Af-

ter cells reached 80% confluency, cells were switched to 16 mL pre-warmed DMEM without FBS

for 1-2 hours. For each dish, the following were added, in order, to 1.2 mL DMEM: 14 𝜇g of

FCK-RGECI plasmid, 9𝜇g psPAX2, and 4𝜇g VsVgwere combinedwith 36𝜇L of 1mg/mLPEI

in water (Aldrich #408727). The tube was vortexed and incubated at room temperature for 10

minutes. The mixture was then pipetted dropwise over the surface area of the dish and the cells

were returned to the incubator for 4 hours. After the incubation, the medium was replaced with

16 mL DMEM + 10% FBS without antibiotics. 36-48 hours later, the medium was collected and

centrifuged for 5 min at 500 × g. The supernatant was filtered through a 0.45 𝜇m filter blocked

with DMEM + 10% FBS and aliquoted in 1-5 mL fractions. Aliquots were kept at -80∘C until

use.

2.2.2.3 Primary neuron culture and gene expression

Cultured rat hippocampal neurons on astrocyte monolayers were prepared as previously de-

scribed82, with two modifications: (1) In Vitro Scientific dishes model D35-14-1.5-N were used

instead of D35-20-1.5-N, while keeping the cell densities the same, and (2) neurons were cultured

in Neurobasal-A (Life Technologies 10888-022) supplemented with B27 (Life Technologies

17504044) instead of Brainbits’ NbActiv4. For electrophysiological and AON measurements,

neurons were transfected via calcium phosphate, as previously described82 onDIV7 and used on
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DIV14-16. For comparison ofRGECI performance by field stimulation (Figure 2.1b,c), cultured

neurons were lentivirally transduced. On DIV 7, half of the media from each dish (1 mL) was

reserved and replaced with 250 𝜇L of low titer FCK-RGECI lentivirus. After two days, all of the

media was removed and replaced with the reserved media supplemented with an additional 1 mL

of Neurobasal-A + B27 supplement.

2.2.3 Imaging and electrophysiology in culture

2.2.3.1 Microscope

A custom-built epifluorescence microscope was used for measurements in HEK293T cells and in

cultured neurons. Illumination was provided by a 561 nm 100mW laser (Cobolt Jive 0561-04-01-

0100-500) or a 488 nm 100 mW laser (Coherent Obis 1226419). The laser lines were combined

and focused in the back focal plane of the objective (Olympus Fluor 4x 0.24NA for single action

potential measurements of RGECIs; Olympus LCPlanFL 20x 0.40NA for RGECI photobleach-

ing measurements; Olympus UPlanSApo 10x 0.40 NA for RGECI photoswitching characteri-

zation; Olympus ApoN 60x 1.49 NA Oil for eTsChR characterization). Fast modulation of the

488 nm laserwas achievedwith an acousto-optic tunable filter (Gooch&HousegoTF525-250-6-4-

GH18A). Both laser lines were additionally modulated by neutral density filters as necessary. Flu-

orescence light was separated from illumination light using a quadband dichroic (Semrock Di01-

R405/488/561/635). HQ550/50m or ET595/50 bandpass emission filters (Chroma) were used

to isolateGFPorRGECI fluorescence, respectively, before capturing on a scientificCMOScamera

37



(Hamamatsu Orca Flash 4.0). For photobleaching measurements, an additional 1 OD filter was

inserted in the imaging path to avoid saturating the camera. Illumination profiles were acquired

on bead samples before experiments each day and spot size was determined using a 1/e2 cutoff.

Laser powers were measured at the sample plane. A digital acquisition (DAQ) card (National

Instruments PCIe 6259) was used to synchronize command and recording waveforms. Imaging

frame rates and illumination powers are indicated in figure captions for each experiment.

2.2.3.2 Imaging and electrical recordings

In all imaging measurements, culture medium was replaced with imaging buffer containing, in

mM, 125 NaCl, 2.5 KCl, 2.5 HEPES, 30 glucose, 1 MgCl2, 3 CaCl2. The buffer pH was adjusted

to 7.3 and osmolarity was 310 mOsm. Measurements were carried out at room temperature. 10

𝜇m CNQX, 20 𝜇m gabazine, and 25 𝜇m APV (all Tocris) were included in cultured neuron

experiments to block synaptic transmission. Channelrhodopsin characterization measurements

were performed in synaptic blockers with the addition of 1 𝜇m tetrodotoxin (Tocris). No addi-

tional all-trans retinal was added.

Field stimulation (Figure 2.1b,c) was performed by inserting two chlorided silver wire loops 2

cm apart into the glass-bottomed imaging dish, touching the plastic on either side of the coverslip.

A high voltage amplifier (Krohn-hite 7600M) was used to amplify 1 ms pulses generated by the

DAQ card to 60-120 V. 3-4 FOVs were acquired for each construct, using a fresh dish each time.

For patch clamp electrophysiology measurements (Figure 2.1e-g, Figure 2.9d), 3-5 MΩ

borosilicate glass pipettes (WPI) were filled with internal solution containing, in mM, 125 potas-
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sium gluconate, 8 NaCl, 0.6 MgCl2, 0.1 CaCl2, 1 EGTA, 10 HEPES, 4 Mg-ATP, 0.4 Na-GTP,

adjusted to pH 7.5 and 295 mOsm with sucrose. Voltage- and current-clamp recordings were

obtained with a Multiclamp 700B amplifier (Molecular Devices) while illuminating with 1 s

488 nm pulses or 2s 561 nm pulses of intensities indicated in figure captions. In voltage clamp

measurements, cells were held at -65 mV. In current-clamp measurements, an offset current was

injected to maintain the resting membrane potential at -65 mV. Signals were filtered at 5 kHz

with the amplifier’s internal Bessel filter and digitized at 10 kHz.

2.2.3.3 Data analysis

All values are expressed as mean ± standard error of the mean (s.e.m.). P values were obtained

from Student’s t-tests unless otherwise indicated.

Whole FOV RGECI single action potential responses (Figure 2.1b,c, Table 2.1) were ex-

tracted as previously described 131. Activation time constants were extracted from monoexpo-

nential fits between stimulation onset and maximum ΔF/F. For inactivation time constants, the

fluorescence trace after the maximum ΔF/F was fit to a sum of two exponential decays, and

the 𝜏off was taken as the time for the fit to decay to half its maximum value. Photobleaching

traces (Table 2.1) were extracted from separate cells and fit to a monoexponential to obtain time

constant 𝜏bleach.

Movies of blue light photoswitching (Figure 2.2d,e) were preprocessed to reject saturated pix-

els and a threshold equal to half the average of movie was used to separate foreground from

background. Background intensity was subtracted from the original movies and the averages of
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the resulting foreground traces (combining 10-20 cells each) were used in downstream analysis.

Traces were converted to ΔF/F using the fluorescence value before blue light stimulation as F0.

“Photoswitching ΔF/F” was defined as the ΔF/F immediately after blue light illumination ends

(Figure 2.2d, inset).

For comparison of channelrhodopsins (Figure 2.1e-g, Figure 2.9d), cells were rejected if they

required>100pAholding current tomaintain -65mV in current clampor if their baselines drifted

by more than the smallest steady state photocurrent amplitude in voltage clamp mode. Steady-

state 488 nm photocurrents were extracted as the average photocurrent over the last 100 ms of

blue light illumination. Steady state 561 nm photocurrents and depolarizations were extracted

from 1 s of data. On time constants were obtained from single exponential fits to the first 1.5 ms

of 488 nm illumination. Off time constants were obtained from single exponential fits to the 99.5

ms following blue light 488 illumination.

Recordings of jRGECO1a fluorescence in Figure 2.1h were corrected for photobleaching

with a bi-exponential fit to the initial period in each movie, before stimulation, while recordings

of BeRST1 fluorescence were corrected for photobleaching by a sliding, 1000 point, median fil-

ter. Both traces were converted to ΔF/F based on the fluorescence before blue light stimulation.

Frames acquired during blue light stimulation were dropped to avoid optical crosstalk.
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2.2.4 Hadamard imaging

2.2.4.1 Microscope

In the ultra-widefield microscope (Figure 2.3a), a 561 nm laser beam (MPB Communications F-

04306-02) was transmitted through a rotating diffuser, and merged with a 470 nm LED beam

(Thorlabs M470L3). Both were expanded, focused, and coupled through free space to fill with

highNA illumination a digitalmicromirror device (DMD)module (VialuxV-7001; 1024x768pix-

els, 13.7𝜇mpitch). Multiple diffraction orders emitted from theDMDpattern were transmitted

by a 100mmprojection tube lens (ZeissMakro-Planar 100mm, L1 in Figure 2.3a), reflected off a

custom dichroic mirror (Semrock Di01-R405/488/561/635-t3-60x85), and imaged onto the sam-

ple by a 50 mm objective lens (Olympus MVPLAPO 2XC, NA 0.5, L2 in Figure 2.3a). The 3

mmsubstrate thickness of thedichroicmirrorminimizedwarping-inducedprojection aberrations.

Fluorescence emission was collected through the same objective and dichroic, a large diameter

(60mm) emission filter (Semrock FF01-520/35-60-D or Chroma ET600/50m, F in Figure 2.3a),

and a 135 mm imaging tube lens (Zeiss Apo-Sonnar 135 mm, L3 in Figure 2.3a) onto a scien-

tific CMOS camera (Hamamatsu Orca Flash 4.0, 2048x2048 pixels). The FOVwas 4.6x4.6 mm2

in the sample plane, corresponding to a magnification of 2.89x onto the camera, and 2.17x onto

the DMD. Camera and DMD pixels were 2.25 𝜇m and 6.3 𝜇m wide in the sample, respectively.

Hardware and triggers were programmed in LabView, with pattern generation and data analysis

performed in MATLAB.
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2.2.4.2 Illumination patterns

To reject light scattered within the sample, pattern sequences were designed such that in the pro-

jected series of 2D images, neighboring locations of the sample were illuminated with orthogo-

nal functions of intensity vs. time. A Hadamard matrix, 𝐻 , of size 𝑚 is a binary square ma-

trix with elements {−1, 1} that fulfills 𝐻 𝑇𝐻 = 𝑚𝐼𝑚 , where 𝐼𝑚 is the identity matrix of size

𝑚; its normalized form has value 1 in the first column and first row. Illumination intensities

could not be negative, so the projected intensity patterns were defined as 𝑃 = (𝐻 ′ + 1)/2 where

𝐻 ′ = 𝐻[1, … ,𝑚;𝑚 − 𝑛 + 1, … ,𝑚] was an incomplete orthogonal basis given by the last 𝑛

columns of a normalized Hadamard matrix, with 𝑛 < 𝑚.

The illumination patterns𝑃 thus had binary values {0, 1} corresponding toDMDmirror posi-

tions OFF andON respectively. Each location was illuminated with a positive temporal function

orthogonal to all other designed Hadamard codes, as verified by 𝑃 𝑇𝐻 ′ = 𝐼𝑛𝑚/2. For a given

number of locations, a Hadamard matrix provided a set of shortest possible binary orthogonal

functions. To arrange the 𝑛 codes in 𝑃 into illumination patterns,𝑚 = 𝑛 + 1 images were de-

fined assigning code 𝑘𝑖 ,𝑗 ∈ {1…𝑛} to DMD pixel (𝑖 , 𝑗 ), as 𝑘𝑖 ,𝑗 = mod(𝑖𝑞 + 𝑗 , 𝑛) + 1, where

𝑞 was an offset parameter that maximized spatial separation of repeated codes. (𝑛, 𝑞) was set to

(11, 3) for functional imaging, and to (63, 14) or (59, 8) for structural imaging. To further reduce

spurious scattering cross-talk, a random binary mask𝑅 was generated to flip the sign of 50% of

DMD pixels, applied as an exclusive OR operation on all DMD patterns against the same mask

𝑅. In the compressed sensing experiment (Figure 2.10) the sequence of Hadamard patterns was
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interleaved with its complement (interchanging bright and dark pixels).

2.2.4.3 Calibration

To prepare the system for each imaging session, a calibration data-set 𝐶 was obtained by plac-

ing a thin fluorescent sample at the focal plane, and acquiring an image with each illumination

pattern. The sample consisted of green or orange neon Sharpie (Newell Brands, NJ) ink painted

on (or sandwiched between) glass coverslips, to match imaging conditions of subsequent acute

(fixed) tissue experiments. For each camera pixel, the time series of its photon counts was cross-

correlated against each Hadamard sequence as 𝐶 𝑇𝐻 ′. The resulting cross-correlation images

displayed sharp peaks indicating the projected DMD locations for each code, with positive or

negative correlation given by 𝑅. A synthetic approximation to the cross-correlation maps was

calculated by finding the code with maximum absolute correlation for each pixel, yielding homo-

geneous, noise-free cross-correlation maps.

2.2.4.4 Reconstruction

A Hadamard sequence data-set𝐷 was acquired after replacing the calibration sample with a tis-

sue sample. Photon counts at each camera pixel were cross-correlated against each Hadamard

sequence as 𝐷 𝑇𝐻 ′. Cross-correlation images displayed a set of peaks modulated by the local

fluorophore density, and broadened by off-focus fluorescence and light scattering in the sample.

Each peak characterized the scattering function of the corresponding tissue location, i.e. its abso-

lute value represents the image one would record with an illumination spot focused solely at that
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location in the tissue. The next step was to apply a set of computational ‘pinholes’ to select the

unscattered in-focus photons, and to reject all others. The spatial filter was implemented through

the element-wise product of calibration correlation maps and tissue correlation maps, resulting

in the positive filtered maps 𝐹 = 𝐶 𝑇𝐻 ′ ⊙ 𝐷 𝑇𝐻 ′, where⊙ denotes element-wise multiplica-

tion. This computational process was akin to sifting emitted light through an array of pinholes

as happens physically in spinning disk confocal microscopy. The final computation step was to

aggregate the unscattered light by direct sum of the filtered images over all codemaps, defining an

optical section image 𝜙𝑖 = ∑𝑛
𝑘=1 𝐹𝑖 ,𝑘 .

All static Hadamard image computations in this work were accelerated by computing 𝜙𝑖 =

∑𝑚
𝑘=1𝐺𝑖 ,𝑘 , with𝐺 = 𝐶 𝑇 ⊙𝐷 𝑇 . This approach is numerically equivalent to the more involved

process described above, as proved by:

𝜙𝑖 =∑
𝑛
𝑘=1 𝐹𝑖 ,𝑘

=∑𝑛
𝑘=1∑

𝑚
𝑝=1 𝐶𝑖 ,𝑝 𝐻𝑘,𝑝 ∑

𝑚
𝑞=1𝐷𝑖 ,𝑞 𝐻𝑘,𝑞

=∑𝑚
𝑝=1∑

𝑚
𝑞=1 𝐶𝑖 ,𝑝 𝐷𝑖 ,𝑞 ∑

𝑛
𝑘=1𝐻𝑘,𝑝 𝐻𝑘,𝑞

=∑𝑚
𝑝=1∑

𝑚
𝑞=1 𝐶𝑖 ,𝑝 𝐷𝑖 ,𝑞 𝛿𝑝,𝑞

=∑𝑚
𝑞=1 𝐶𝑖 ,𝑞 𝐷𝑖 ,𝑞

=∑𝑚
𝑘=1𝐺𝑖 ,𝑘 ,

where 𝛿𝑝,𝑞 is a Kronecker delta. The resulting optical section preserved unscattered light emitted

from the focal plane, while rejecting scattered light and background emissions. Standard wide-
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field epifluorescence images were also computed from each Hadamard dataset by computing a

direct sum of all frames in the raw images,𝑊𝑖 = ∑𝑚
𝑘=1𝐷𝑖 ,𝑘 .

To correct for slight motion artifacts due to sample drift, all datasets from one brain slice were

registered to a reference image using a b-splines transform maximizing mutual information 132.

2.2.4.5 Compressed Hadamard Imaging

While this manuscript was in review, we developed a compressed sensing measurement method

to increase the time resolution from𝑚 camera frames (where𝑚 is the length of the Hadamard

sequence) to 2 camera frames per optical section. This approach and its trade-offs are character-

ized in Chapter 3. For application of compressed Hadamard imaging to AON (Figure 2.10),

procedures, optogenetic methods, and imaging protocol were as in other experiments, except an

Olympus XLPLN10XSVMP (NA = 0.6) objective was used to map DMD and camera pixel size

to 2.52 and 0.9 𝜇m at the sample respectively. Illumination comprised 24 patterns, interleaved

with their complements, repeated in 36 cycles. Camera and DMD frames were updated at 66 Hz.

Reconstruction was performed in 64x64 pixel blocks with 40 principal components per block.

2.2.4.6 Hadamard image formation

To understand the optical sectioning process, Hadamard microscopy was modeled as an inco-

herent illumination, intensity-linear space-invariant optical system, in which the intensity after

propagation is given by a convolution between intensity before propagation and an intensity

impulse response function. In a discrete representation, the circulant convolution matrix 𝑆 𝑇1
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represented three-dimensional excitation intensity at the object, in response to an impulse func-

tion reflectance at the DMD plane (turning on one DMD pixel). Similarly, 𝑆2 was defined as

the intensity collected by an impulse detector at the camera plane from emitted fluorescence in

a three-dimensional object (analogous to detection from one camera pixel). The data collected

from tissue with fluorophore distribution 𝐺 upon illumination with a structured illumination

pattern𝑃 was represented as𝐷 = 𝑆2 diag(𝐺)𝑆 𝑇1 𝑃 , where diag denoted rearrangement between

vector and diagonal matrix. Calibration with a thin uniform fluorescent object and no scattering

was represented as 𝐶 = 𝑃 . After assuming that 𝑃 contains an orthonormal Hadamard code

with no spatial repetition, it followed that𝐶 𝑇𝐻 ′ = 𝐼𝑛 , and𝐷 𝑇𝐻 ′ = 𝑆2 diag(𝐺) 𝑆 𝑇1 𝐼𝑛 . Then

𝜙 = ∑𝑘 𝐶 𝑇𝐻 ′ ⊙ 𝐷 𝑇𝐻 ′ = diag(𝑆2 diag(𝐺) 𝑆 𝑇1 ), or 𝜙 = (𝑆1 ⊙ 𝑆2)𝐺 . The reconstructed

optical section 𝜙 was proportional to the object 𝐺 convolved with the confocal scattering func-

tion 𝑆 = 𝑆1 ⊙ 𝑆2 that resulted from the element-wise product of the projection and collection

scattering functions. This analysis is extended to the continuous domain inAppendix A.

To simulate the effects of lateral sub-pixel offset between the DMD pixels and the smaller

camera pixels, we used a continuous space version of the model described above, defining the

diffraction-limited excitation and emission PSFs asGaussian functions and convolving these PSFs

by square apertures representing the DMD and camera pixels, respectively. The system PSF was

calculated from the product of the excitation and emission PSFs.
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2.2.4.7 Image processing and filtering

The lines between DMD pixels led to a periodic grid artifact in Hadamard optical sections. A

Gaussian stopband filter was used to attenuate these artifacts. The filter parameters were not

changed after initial set-up.

The size of the computational pinholes could be adjusted in software to trade optical signal

level for 𝑧-resolution. Tuning of pinhole sizes was achieved by applying a spatial Gaussian filter

to the calibration patterns, with 𝜎 = 5.6𝜇m for functional images, and 𝜎 = 3.4𝜇m for structural

images. Further increases in 𝜎 to sizes larger than the spacing of pinholes resulted in a continuous

transition to wide-field epifluorescence imaging.

An additional source of systematic error came from local inhomogeneity of illumination pat-

terns. While the projected patterns have 50% duty cycle on average, variations in local illumi-

nation can change the relative contributions of in-plane signal and background, resulting in im-

perfect background cancellation manifested as regions with periodic background artifacts. This

effect wasminimized forHadamard images in Figure 2.5b,c by dividing raw tissue data by its low

spatial frequency component, calculated with a Gaussian filter with 𝜎 = 22.5 𝜇m.

Images in all figureswere linearlymapped to grayscale setting 0 to black and saturating towhite

the 0.01 percentile of highest intensity values unless otherwise indicated.
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2.2.4.8 Characterization

We quantified the performance of Hadamard, stripe SIM, and HiLo optical sectioning methods

by threemeasurements. First, wemeasured the point spread functions by imaging 200nm fluores-

cent beads (Invitrogen F8763) embedded in 1.5% agarose gel. Second, we tested the in-plane uni-

formity of optical sections by measuring a thin fluorescent plane of orange neon Sharpie (Newell

Brands, NJ) ink painted on a glass coverslip. Third, we acquired multi-plane images of an acute

brain slice expressing H2B-jRGECO1a to evaluate the imaging quality of each method in turbid

tissue.

For the beads and plane experiments, illumination patterns for Hadamard codes of length 12,

together with striped illumination with period 4 pixels and 4 phases, were interleaved and repeat-

averaged to match total photons and photobleaching conditions across datasets. HiLo optical

sections were computed from the same patterns used for Hadamard imaging, using a photon-

matched uniform illumination image and a repeat-averaged structured image corresponding to

one Hadamard pattern. HiLo uses only a single random illumination pattern, and thus neces-

sarily uses a non-uniform total photon count across the sample. We used more total photons in

HiLo optical sections to avoid penalizing thismethod in the comparison. A series of images taken

at Δ𝑧 = 2.24 𝜇m were acquired to map the three dimensional PSF.

Hadamard images were calculated as 𝜙𝑖 = ∑𝑚
𝑘=1𝐺𝑖 ,𝑘 , with 𝐺 = 𝐶 𝑇 ⊙ 𝐷 𝑇 . Stripe SIM

optical sections were calculated as 𝜙 = |∑𝑚−1
𝑘=0 𝐼𝑘 exp(−𝑖2𝜋𝑘/𝑚)|, with𝑚 = 4. HiLo opti-

cal sections were calculated setting the wavelet filter 𝜎 = 0.75. DMD modulation grid artifacts
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were present in all datasets and were not corrected. Widefield reference images were obtained by

summing all patterns in the Hadamard sequence.

Images of the homogeneous fluorescent plane were acquired following the same protocol as

for the beads. The same flat field correction was applied to all datasets by subtracting the offset

and dividing by the blurred intensity distribution of a focused widefield image. All datasets were

filtered equally to reduce DMD grid artifacts. Within a region of interest, the standard deviation

of values was normalized by their mean to obtain coefficients of variation.

To estimate the degree of cell-to-cell fluorescence crosstalk in nuclear-labeled acute brain slices,

we first computed a mean Hadamard ‘nucleus spread function’, i.e. the mean fluorescence dis-

tribution measured from multi-plane structural Hadamard images of fluorescent nuclei in acute

brain slices. We then used high-resolution confocal microscopy to estimate the center locations of

all neuronal nuclei in a fixed brain slice up to a depth of 100𝜇m. We computationally positioned

the nucleus spread functions at the nuclear locations, adjusted signal levels to account for themea-

sured attenuation with depth, and estimated the crosstalk, i.e. the amount of signal ascribed to

each nucleus that originated from other nuclei.

2.2.5 Software accessibility

The Hadamard control and analysis software and an example data-set are available at

https://github.com/adamcohenlab/Hadamard-Code

The compressed Hadamard analysis software is available at

https://github.com/adamcohenlab/Compressed-Hadamard-Code
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2.2.6 Animals and acute slice measurements

2.2.6.1 Animals

All procedures involving animalswere in accordancewith theNational Institutes ofHealthGuide

for the care anduse of laboratory animals andwere approvedby the InstitutionalAnimalCare and

Use Committee (IACUC) atHarvardUniversity. Excitabilitymeasurements and characterization

of functional Hadamard imaging were performed in wild type C57Bl6 (Charles River Labs #027)

mice. Functional connectivity assays were performed inRbp4-Cre+/−mice donated by Bernardo

Sabatini’s lab and originally generated in the GenSat project (#KL100). For structural imaging of

membrane bound mCitrine, FLOXed Optopatch-3 mice (Jackson Labs #029679) were crossed

with Rbp4-Cre+/− mice or with CaMK2a-Cre+/− mice (Jackson Labs, #005359).

2.2.6.2 AAV injection

AAV2/9-hSyn-DO-H2B-jRGECO1a (1.60×1013 GC/mL) andAAV2/9-hSyn-eTsChR(2.22×1013

GC/mL) were produced at Massachusetts Eye and Ear Infirmary Vector Core. AAV2/9-CAG-

DIO-CheRiff-TS-GFP (5.80×1013 GC/mL) was produced by the Stanford Vector Core. AAV1-

hSyn-NES-jRGECO1a (2.44×1013 GC/mL) was purchased from the University of Pennsylvania

Vector Core. When two viruses were coinjected, they were mixed in a one-to-one volume ratio.

The final mixture was mixed in a 7:1 ratio with 0.4% Trypan Blue to aid in visualization during

injection. For viral injections, neonatal (P0-2) animals were cold-anesthetized and taped to an

aluminum heatsink submerged in an ice bath, with their heads resting on a modeling clay sup-
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port. A stereotaxic injector (WPI #UMC4) mounted on a stereotaxic frame (Stoelting) was used

to inject virus 1.6 mm anterior and 1.6 mm lateral to lambda every 0.4 mm starting from 3 mm

beneath the surface of the skull. 40 nL of virus was delivered at each depth at a rate of 5 nL/s. If

only one virus was used, only 20 nL were injected per depth. Expression levels were sufficiently

high for Hadamard imaging from 12 days until at least 9 weeks after injection.

2.2.6.3 Preparation of fixed slices

Fresh 300 𝜇m brain sections were incubated in 4% paraformaldehyde overnight at 4 ∘C, then

mounted on a glass slide in Fluoromount and stored at 4 ∘C.

2.2.6.4 Acute slice preparation and imaging

Acute slices were prepared from P21-28 animals. Animals were deeply anesthetized via isoflurane

inhalation and transcardially perfused with ice-cold choline cutting solution, containing, in mM,

110 choline chloride, 25 NaHCO3, 2.5 KCl, 7MgCl2, 0.5 CaCl2, 1.25 NaH2PO4, 25 glucose, 11.6

ascorbic acid, and 3.1 pyruvic acid (310 mOsm/kg). The brain was blocked with one coronal

cut just anterior to the tectum and mounted with Krazy glue on the specimen disk of a Leica

VT1200s vibratome. After mounting, hemispheres were separated with a sagittal cut down the

midline of the brain. The brain was covered with more ice-cold choline solution and then sliced

in 300𝜇m steps. Slices containing the striatumwere recovered for 45minutes in a 34 ∘C artificial-

cerebrospinal fluid (ACSF) bath containing, in mM, 125 NaCl, 2.5 KCl, 25 NaHCO3, 2 CaCl2, 1

MgCl2, 1.25NaH2PO4, 25 glucose (295mOsm/kg). Slices were kept in room temperature ACSF
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until ready to measure and were used within 8 hours. All solutions were bubbled with carbogen

(95% O2, 5% CO2) for the duration of the preparation and subsequent experiment.

For imaging, slicesweremounted onPoly-L-Lysine (PLL) coated coverslips. Coverslips (Fisher

#12-545-80) were plasma cleaned for 3 minutes, covered with 50-100 𝜇L 0.1% (w/v) PLL (150-

300 kD) solution (Sigma #P8920) and allowed to dry under vacuum. Coverslips were thoroughly

washed with nanopore water and dried before use. Tomount the tissue, a slice was transferred to

the PLL-coated face of the coverslip with a Pasteur pipette. Excess ACSF was pipetted or wicked

away with filter paper, in the process flattening out the brain slice and adhering it to the glass.

We found that this method worked reliably for coronal slices from one hemisphere but not for

coronal slices from the entire brain. Coverslips were placed in a custom-built flow chamber with

a microscope slide bottom and #1.5 coverslip lid. ACSF was perfused at a rate of 1 mL/min with

a VWR peristaltic pump.

The imagingprotocol consisted of a 2 s imaging epoch followedby a 400ms stimulationperiod

and another 2 s imaging epoch. Each imaging epoch comprised 11 frames of functionalHadamard

acquired with a 180 ms period under 100 mW/cm2 561 nm illumination. Blue light stimulation

protocols are described in figure captions. The slice was allowed 6 s to recover before starting

another imaging epoch. One run consisted of 6 imaging and stimulation rounds over oneminute.

Runs were repeated several times, spaced out by at least five minutes. NBQX and CPP, or TTX

(Tocris) or retigabine, phenytoin, or carbamazepine (Sigma) were added to the ACSF from 1000x

stock solutions after several baseline runs. In figure 4, brain slices were randomly selected from a

pooled set of slices for different drug treatments.
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2.2.7 Analysis of slice data

2.2.7.1 Registration

After reconstruction of Hadamard images as detailed in Section 2.2.4.4, frames for each epoch

were averaged together. Small movements and deformations in the slice over the course of multi-

ple runs were corrected by automatic non-rigid registration 132. Functional Hadamard recording

and structural Hadamard images were manually registered using a 2D affine transformation.

2.2.7.2 Cell selection

ΔF imageswere calculated for each registered run by subtracting images acquired before blue light

stimulation from images acquired immediately after blue light stimulation. Peaks in ΔF images

corresponded to individual cells, but noise in ΔF varied as a result of brightness inhomogeneities

in the slice, making it difficult to extract peaks directly. To correct for this noise, a widefield image

for each slice was blurred with a 2DGaussian with an 8 pixel (19.2𝜇m) standard deviation, to re-

move nucleus sized objects. The square root of this image was used to normalize the ΔF image of

the slice. High spatial frequency noise was removed with a 2d Gaussian filter with a 0.5 pixel (1.2

𝜇m) standard deviation. Regions without expression were manually selected and standard devia-

tions in these regions were chosen as a noise floor. Cells were identified as peaks in the normalized

ΔF image which had an amplitude larger than the noise floor by a user-defined factor, typically

7 – 10. Cells were required to have a minimum distance in space of 4 pixels (9.6 𝜇m) to avoid

double counting cells. Once cell locations were identified, single-cell fluorescence traces were ex-
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tracted from corresponding locations in movies of unnormalized data blurred with 2d Gaussian

filter with 1 pixel standard deviation.

2.2.7.3 Exclusion of spontaneously active and dying cells

While measuring a large number of cells in an acute slice, a portion of cells showed spontaneous

activity, characterized by transient fluorescent increases uncorrelated with blue light stimulation;

and cell death, characterized by a large and irreversible increase in fluorescence. For Figs. 6-9, slices

were imaged nine times, five times before AED application and four times after. Imaging epochs

were averaged to generatemovieswith 108 frames (12 epochs per run x 9 runs). After extracting cell

traces from these movies for all slices in the experiment, each cell’s mean and standard deviation

per run were calculated. Least squares fits on the mean and standard deviation were performed

on 3-pre drug runs and projected to the full nine runs. Cells were excluded from further analysis

if any projectedmean or standard deviationwas less than 1/15 of the cell’smean value or if the root

mean square error of the fit was larger than 1/15 of the cell’s mean value. This procedure rejected

< 17% of cells.

2.2.7.4 Generation of excitability maps

To generate themaps inFigure 2.7 the fluorescence trace for each included cell was normalized by

subtracting its mean fluorescence values for each run and normalizing by the standard deviation

for each run. For each cell, 3 pre-drug runs were averaged together to yield a 12 element vector

corresponding to normalized F in each epoch. Principal component analysis yielded 3 main prin-
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cipal componentswhichwere then back-projected into pixel space for each slice, yielding the black

and white images in Figure 2.7c. Color images (Figure 2.7d,e) were generated using L*a*b col-

orspace, by projecting PC1 into lightness, L, and PC2 and PC3 into the red-green and blue-yellow

axes, a and b.

To generatemaps of changes in drug response inFigure 2.8a, ΔF images from four runs before

and after drug addition were averaged together, median filtered with a 3 pixel kernel, saturated at

their 99.5thpercentile, anddisplayed in the green and red channels, respectively. Theblue channel

is the average of the red and green images. Color saturation was adjusted in L*a*b space to aid

in visualization. In Figure 2.9 ΔF images are scaled to the same absolute counts and shown in

separate color channels.

2.2.7.5 Cortical layer analysis

All striatal cells were pooled and treated separately. For cortical cells, cortex boundaries wereman-

ually defined in structural images as the surface of thebrain and thebottomofLayer 6. Boundaries

were registered to functional images (above) and cells were assigned a normalized depth coordi-

nate based on these boundaries. Drug response, defined as ΔFdrug/ΔF0, could then be related

to normalized cortical depth. For each slice, cells were binned by cortical depth and the drug

response per cell averaged over cells. Extreme cell responses were excluded from each bin using

the generalized extreme Studentized deviate test. Layer boundary locations were taken from the

primary somatosensory cortex in the matched coronal slices of the Allen Brain Reference Atlas.

KCNQ3 expression levels were acquired fromAllen Brain Institute experiment #100041071. The
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somatosensory cortex wasmanually defined in 11 sagittal slices from a P28male mouse. The avail-

able expression image was used tomask the raw data, but expression values were obtained directly

from the raw ISH data. The edges of the cortex and cortical depth bins were defined as above and

expression values were averaged together across slices from the same experiment.

2.3 Results

2.3.1 A spectrally orthogonal Calcium sensor and

channelrhodopsin for one-photon AON

AON requires a spectrally orthogonal optogenetic actuator and activity reporter (Figure 2.1a).

Examination of channelrhodopsin action spectra and Ca2+ reporter excitation spectra suggested

that the best approach for 1-photon AON was to use a blue-shifted channelrhodopsin and a red-

shifted genetically encoded Ca2+ indicator (RGECI) (Figure 2.1a). We thus set out to identify

protein pairs suitable for this purpose.

We began by comparing the single action potential responses of RGECIs in cultured neurons.

jRGECO1a was the most sensitive (ΔF/F = 54 ± 10%, 𝑛 = ∼120 neurons. Unless otherwise indi-

cated, all uncertainties are standard errors of the mean), followed by R-CaMP2 and jRCaMP1a,

consistent with previous reports (Figure 2.1b, Table 2.1) 129. R-CaMP2 had the fastest kinetics

(𝜏on = 26 ± 10 ms, 𝜏off = 270 ± 20 ms, 𝑛 = ∼120 neurons), followed by jRGECO1a (𝜏on = 47

± 1 ms, 𝜏off = 440 ± 40 ms, 𝑛 = ∼120 neurons) and jRCAMP1a (Figure 2.1c, Table 2.1). In

HEK293T cells, under basal Ca2+ conditions, jRGECO1a had the longest photobleaching time
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Figure 2.1: All-optical neurophysiology with
a blue-shifted channelrhodopsin and a red-
shifted Ca2+ indicator. a) Left: Schematic
of a spectrally orthogonal channelrhodopsin and
RGECI. Right: action spectra of proteins used in
this work. Spectra are reproduced with permission
for jRGECO1a 70, TsChR 130, and CheRiff 82. b) Sin-
gle action potential responses of RGECIs in cul-
tured rat hippocampal neurons. Dark lines indi-
cate the average of 3 FOVs, ∼30 cells/FOV, for R-
CaMP2 and 4 FOVs for jRGECO1a and jRCaMP1a.
Colored bands indicate ± s.e.m.. Dishes were stim-
ulated with 1 ms field stimulation pulses. RGECI
fluorescence was recorded at 50 Hz. c) Kinetics of
the RGECIs, shown by plotting data in (b) normal-
ized to peak ΔF/F. (d) Cultured hippocampal neu-
ron coexpressing H2B-jRGECO1a (magenta) and
eTsChR (green). Scale bar 10 𝜇m. e) Steady
state photocurrents of eTsChR and ChR2(H134R)
in cultured neurons held at -65 mV (1 s pulses,
488 nm, 𝑛 = 6 cells for each construct). Inset:
photocurrent response to 2 W/cm2 488 nm illu-
mination. f) Channelrhodopsin activation time
constant as a function of 488 nm illumination in-
tensity. Inset: photocurrents during illumination
start. g) Closing time constants. Inset: pho-
tocurrents during illumination stop. h) Optoge-
netic stimulation induced action potentials and
corresponding fluorescence transients in a cul-
tured neuron expressing jRGECO1a and eTsChR.
Pulses of blue light (488 nm, 10 ms, 680 mW/cm2)
drove action potentials (*), which were identified
via fluorescence of a far-red voltage-sensitive dye,
BeRST1 133 (1 𝜇m, black). Fluorescence transients
of jRGECO1a accompanied action potentials (red).
TTX (1 𝜇m) silenced activity in both the voltage
(pink) and Ca2+ (grey) channels, confirming that
signals arose from neural activity and not optical
crosstalk. Voltage imaging was performed at 500
Hz with 0.7W/cm2 640 nm light and calcium imag-
ing was performed at 20 Hz with 1.1 W/cm2 561
nm light. All error bars indicate mean ± s.e.m..
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Construct Single AP
max ΔF/F (%)

𝜏on (ms) 𝜏off (ms) 𝜏bleach (s)

jRGECO1a 54 ± 10,
𝑛 = 4 FOV,
∼30 cells/FOV

47.2 ± 1.0 443 ± 38 80.5 ± 5.1,
n = 9 cells

R-CaMP2 31 ± 3,
𝑛 = 3 FOV,
∼30 cells/FOV

26.3 ± 1.0 271 ± 20 61.9 ± 2.8,
n = 8 cells

jRCaMP1a 17 ± 4,
𝑛 = 4 FOV,
∼30 cells/FOV

61.2 ± 2.1 1600 ±160 37.8 ± 2.1,
n = 8 cells

Table 2.1: In vitro characterization of RGECIs. Quantification of action potential responses in
cultured neurons in Figure 2.1, and photobleaching kinetics in HEK293T cells. Action potential mag-
nitudes and sensor kinetics are from 3 FOVs for R-CaMP2 and 4 FOVs for jRGECO1a and jRCaMP1a
in separate dishes. Dishes were stimulated with 1 ms field stimulation pulses while imaging RGECI
fluorescence at 50 Hz with 2.45 W/cm2 561 nm illumination. Photobleaching measurements were
performed in HEK293T cells under 44 W/cm2 561 nm illumination (compared to 0.1 W/cm2 used in
slice imaging). All values are reported as mean ± s.e.m..

constant (𝜏bleach = 81 ± 5 s, 𝐼561 = 44 W/cm2, 𝑛 = 9 cells), followed by R-CaMP2 and jRCaMP1a

(Table 2.1). Under typical imaging conditions (𝐼561 =0.1W/cm2), photobleaching of jRGECO1a

was thus< 10%during 1 hr of continuous imaging. While photobleaching is often a concern for 1P

imaging, these results established that this effect was minor for wide-area imaging of jRGECO1a.

We selected jRGECO1a for its superior sensitivity and photostability.

mApple-based fluorescent sensors, including jRGECO1a, are known to undergo photoswitch-

ing under blue light illumination69,70. We thus sought a blue-shifted channelrhodopsin that

could drive spikes in jRGECO1a-expressing neurons at blue intensities low enough to avoid op-

tical crosstalk. TsChR is the most blue-shifted published ChR (Figure 2.1a), but was initially

reported to produce only∼40% asmuch photocurrent as ChR2(H134R) 130 and so has not previ-
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ously been used in optogenetic applications. Addition of a Kir2.1 trafficking sequence (TS) and

a GFP expression tag to TsChR led to excellent trafficking in cultured neurons (Figure 2.1d).

We called this construct eTsChR-eGFP. Compared to ChR2(H134R), eTsChR had higher steady

state photocurrents (470 ± 42 vs. 288 ± 60 pA, 𝑝 = 0.034, Student’s t-test, 𝑛 = 6 neurons each,

Figure 2.1e). At the highest blue light intensity tested (33 W/cm2), ChR2(H134R) passed a

steady state photocurrent of 288 ± 60 pA; eTsChR passed the same steady state photocurrent

at 100-fold lower intensity (0.33 W/cm2). Compared to ChR2(H134R), eTsChR also had higher

maximum steady state photocurrent densities (13.2 ± 1.2 pA/pF vs. 7.8 ± 2.0 pA/pF, 𝑝 = 0.044,

Student’s t-test, 𝑛 = 6) and faster on- and off- kinetics (Figure 2.1f,g).

We co-expressed jRGECO1a and eTsChR in cultured rat hippocampal neurons, and used the

far-red voltage-sensitive dye BeRST1 133 as a ground-truth reporter of neural spiking. Flashes

of blue light (0.7 W/cm2, 10 ms) induced action potentials, reported by BeRST1 fluorescence,

and Ca2+ transients, reported simultaneously by jRGECO1a fluorescence (Figure 2.1h). The

sodium channel blocker TTX (1𝜇M) eliminated the light-evoked transients in both the BeRST1

and jRGECO1a fluorescence channels, confirming that the jRGECO1a response reflected spiking-

dependent Ca2+ influx and that the optogenetic stimulation did not induce detectable photo-

artifacts in the jRGECO1a fluorescence.

Cytoplasmic expression of jRGECO1a in brain slices led to a high level of fluorescence back-

ground from reporter present in neuropil, even with the optically sectioned imaging approaches

described below (Figure 2.2a). To facilitate imaging in tissue, we fused jRGECO1a to a Histone-

2B (H2B) tag to localize expression to the nucleus (Figure 2.1d and Figure 2.2b), as previously
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Figure 2.2: Characterization of soma-localized RGECIs and eTsChR. (a,b)Maximum intensity
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cultured rat hippocampal neurons, 𝑛 = 6 for each construct. All error bars indicate mean ± s.e.m..

60



eTsChR ChR2(H134R)-GFP 𝑝 -value,
Student’s 𝑡 -test

Access resistance (MΩ) 12.3 ± 1.5 12.4 ± 1.3 0.96
Membrane resistance (MΩ) 633 ± 84 467 ± 88 0.20
Membrane capacitance (pF) 36.5 ± 4.8 44.9 ± 9.7 0.45
Resting potential (mV) -36.5 ± 4.8 -44.3 ± 2.9 0.13

Table 2.2: In vitro characterization of eTsChR. Patch parameters of cells in Figure 2.1. All values
are reported as mean ± s.e.m., 𝑛 = 6 cells throughout.

done for zebrafish 134 and rat 135 brain imaging. The nuclear-localized H2B-jRGECO1a showed

clearly resolved nuclei with little background between the cells. In cultured neurons, H2B-

jRGECO1a responded to single action potentials with good sensitivity (ΔF/F = 19.4 ± 5.3%, 𝑛

= 3 cells), but with slower kinetics than the cytosolic reporter, (𝜏on = 167 ± 27 ms, 𝜏off = 1,400 ±

270 ms) consistent with previous measurements of nuclear Ca2+ dynamics (Figure 2.2c) 136,137.

We tested for optical crosstalk between actuator and reporter channels in cells co-expressing the

optimized AON constructs. Due to the high sensitivity of eTsChR, the blue light doses needed

to elicit spikes (0.7 W/cm2 for 10 ms, 𝜆 = 488 nm) induced minimal photoartifact in either cy-

toplasmic or nuclear jRGECO1a compared to a single-spike Ca2+ signal (-2% photoartifact in

Figure 2.2d vs. 19% spike response in Figure 2.1h, Figure 2.2e). Crosstalk from direct blue

light excitation of jRGECO1a fluorescence was avoided in the experiments below by interleaved

optogenetic stimulation and fluorescence imaging.

The yellow light used for Ca2+ imaging (561 nm, 0.1W/cm2) induced in eTsChR a steady-state

photocurrent less than 0.5 pA (Figure 2.2f ), far too small to trigger spurious action potentials.

Expression of eTsChR did not significantly affect neurons’ membrane resistance, membrane ca-
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pacitance, or resting potential compared to controls (Table 2.2). eTsChR and H2B-jRGECO1a

formed a suitable actuator/reporter pair for crosstalk-free 1P AON.

2.3.2 Hadamard microscopy enables optical sectioning in

ultra-widefield images of acute brain slices

We next sought to performwide-area optically sectioned imaging of the AON constructs in acute

brain slices. To achieve high light collection efficiency over a wide FOV, we designed amicroscope

system around a low magnification high numerical aperture objective (Olympus MVPLAPO 2

XC,NA= 0.5). In wide-field epifluorescencemode, this microscope imaged a 4.6mmFOV, large

enough to capture most of a hemisphere of a coronal brain slice, with nominal 2.25 𝜇m lateral

resolution set by the pixel size on the sCMOS detector. Apart from the optical filters and the me-

chanicalmounts, all elements of themicroscopewere off-the-shelf components (Section 2.2.4.1).

To achieve optical sectioning over a wide FOV, we developed a structured illumination ap-

proach based onHadamard encoding. We placed a digital micromirror device (DMD) in the illu-

mination path to enable arbitrary spatiotemporal patterning of the fluorescence excitation. Each

DMD pixel mapped to 6.3 𝜇m in the sample plane. The DMD modulated the excitation light

with a series of binary illumination patterns such that neighboring sample locations were illumi-

nated with orthogonal intensity sequences (𝑃1, 𝑃2, … , 𝑃𝑛 in Figure 2.3a). Raw data consisted of

a series of images (𝐹 (𝑡1), 𝐹 (𝑡2), … , 𝐹 (𝑡𝑚) inFigure 2.3b-1) acquiredwith each illuminationpat-

tern, which were then demodulated to yield images of the scattered light for each illumination lo-

cation (Figure 2.3b-2). Software binarymasks then rejected scattered light (Figure 2.3b-3), akin
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(2) The images are demodulated by matched filtering with the illumination sequence. (3) Scattered
light is rejected by a software aperture. (4) The optically sectioned image is reconstructed from a sum
of the demodulated images. (c) Codes from a Hadamard matrix were tiled to fill image space. The
number of elements in the Hadamard code determined the number of frames in the pattern sequence.
A random mask was applied to invert the code in 50% of illumination pixels, yielding pseudorandom
patterns with flat spatial and temporal power spectra. (d) Raw images were acquired in a calibra-
tion sample (a thin homogeneous fluorescent film) and a tissue sample, one frame per Hadamard
pattern. Cross-correlation maps between microscope data and Hadamard codes produced arrays of
peaks corresponding to signals from distinct sample regions. Negative peaks corresponded to pix-
els whose Hadamard sequence was inverted. Pixel-wise multiplication of the demodulated images
from the calibration sample and from the tissue sample led to multi-point confocal images. These
images were summed to produce an image reconstruction. Detailed description in Section 2.2.4.4.
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to physical pinholes used in confocal microscopy. The sum of images over all illumination loca-

tions yielded an optical section (Figure 2.3b-4 and Section 2.2.4.4). The Hadamard algorithm

is linear and local, i.e. the image resulting from two distinct sources is the sum of the images of

the individual sources; and the final intensity value at each pixel depends only on signals acquired

at that pixel. Thus the results are independent of the sample and do not require any specialized

post-processing.

To make all projected DMD pixels mutually orthogonal would require prohibitively long

digital codes (∼106 samples), but because light scatter is mostly local, repeating the codes periodi-

cally at separations larger than the scattering point-spread function resulted in minimal crosstalk

(Figure 2.3c). Residual crosstalk between repeated codes was scrambled by inverting the se-

quence of a randomly selected 50% subset of the pixels (Figure 2.3c and Section 2.2.4.2). This

procedure resulted in series of patterns with 50% duty cycle, uniform mean illumination across

the sample, and uniform spatial and temporal spectral density. By varying the number of frames

in theHadamard sequence, one can systematically trade time resolution vs. background rejection.

The workflow for acquiring and analyzing Hadamard images is summarized in Figure 2.3d. A

link to the software is given in Section 2.2.5. Application of compressed sensing algorithms to

Hadamardmicroscopy enabled signal extraction at half the frame rate of the camera (Figure 2.10

andChapter 3), though this improved time resolution was not required for the applications de-

scribed in this Chapter.

We comparedHadamardmicroscopy to two other SIM techniques, stripe SIM51 andHiLo 139,

all implemented using the sameDMD and optics. Images of 200 nm fluorescent beads in agarose
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wereused to estimate thepoint-spread functions (PSFs) of the three techniques in anon-scattering

medium. As, expected, line sections through the threePSFs gave identical lateral (FWHM2.7𝜇m)

and axial (FWHM 14.0 𝜇m) resolution near the focus (Figure 2.4). For the low-magnification,

wide-area implementation described here, the resolution in all three cases was determined by the

intersection of the pixel-size-limited DMD illumination spots and the camera collection PSFs.

We performed optical simulations to explore whether lateral shifts between DMD pixels and the

smaller camera pixels would lead to spatially varying spatial resolution. For the parameters of our

experimental setup, the changes in spatial resolution were < 5% in lateral resolution and < 10% in

axial resolution, so these effects were subsequently neglected.

The three imaging techniques differed critically in imaging parameters not captured by the

FWHMof the PSFs, however. Stripe SIM andHiLo PSFs had out-of-focus conical lobes, a conse-

quence of out-of-focus points emitting along the same rays as in-focus and laterally offset points.

These lobes did not lie along either the lateral or axial line sections through the PSF, so they did

not contribute to the PSF dimensions as usually characterized, but they contributed to substan-

tial out-of-plane total fluorescence (Figure 2.4b). Hadamard images lacked this artifact because

use of multiple illumination patterns resolved ambiguities in assignment of out-of-focus fluores-

cence. For Hadamard microscopy, the integrated the PSF in the transverse (x-y) plane decayed to

15% of its peak at a defocus of -30 𝜇m, whereas by the same measure HiLo retained 38% of peak

fluorescence and stripe SIM retained 62% of peak fluorescence (Figure 2.4b). Thus HiLo and

stripe SIM suffered∼2.5-fold and∼4-fold higher background than Hadamard, respectively.

For the purpose of rejecting out-of-focus background fluorescence in tissue, the integrated
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Figure 2.4: Characterization of Hadamard microscopy. (continues)
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(Figure 2.4 continued) Characterization of Hadamard microscopy. (a,b) Comparison of
structured illumination microcopy (SIM) optical sectioning methods using sub-diffraction beads.
(a) Images show (left to right): Wide-field epifluorescence, Hadamard microscopy using 12 patterns,
stripe SIM with period 4 pixels and four phases, and HiLo microscopy using DMD-projected pseu-
dorandom patterns. Top row: Radially averaged meridional cross-section of the point-spread func-
tion (PSF). Second row: transverse cross-section at the focal plane. Third row: transverse cross-
section at 30 𝜇m defocus. For all (a) the color scale is logarithmic, and contours were drawn
on every 4-fold change in intensity. Scale bar is 20 𝜇m, isotropic. (b) (Left and center) Lateral
and axial line profiles through the PSF show equivalent resolution for the three sectioning meth-
ods. (Right) Integrated intensity in transverse cross-sections reveals off-axis spurious side lobes in
stripe SIM and HiLo which contribute to out-of-focus crosstalk. (c) A uniform fluorescent plane
at the focal plane resulted in larger inhomogeneities when imaged using HiLo in comparison with
the other methods, a consequence of inhomogeneities in HiLo illumination 138. The fractional noise
in HiLo did not decrease with increasing photon counts. Top: Optical section images of the uni-
form plane, all shown at the same linear color scale. Bottom: Deviations from uniformity in
the images on top. Hadamard and stripe SIM microscopies avoided this artifact by providing il-
lumination whose time-average intensity was precisely the same at all sample points. Scale bar
200 𝜇m. For all panels, each sample was imaged in matched conditions for all methods (num-
ber of images, illumination intensity, acquisition time). Detailed description in Section 2.2.4.8.
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transverse fluorescence, not the more commonly used axial line section, is the critical parameter.

Thus we expected that Hadamard microscopy would perform better than stripe SIM or HiLo in

resolving single-cell signals in densely expressing tissues. Figure 2.4c and theDiscussion compare

the technical noise and shot noise properties ofHadamard and other SIM techniques. Hadamard

performed as well as or better than the other techniques by these parameters.

We compared the performance of the three structured illumination techniques in brain tis-

sue (Figure 2.5). The sample comprised an acute 300 𝜇m-thick coronal brain slice, expressing

nuclear-targeted jRGECO1a throughout cortex and striatum, and membrane-targeted CheRiff-

GFP restricted by an Rbp4-Cre driver to a subset of Layer 5 (L5) pyramidal cells (Figure 2.5a).

Hadamard images clearly resolved individual cells, whereas wide-field epifluorescence did not

(Figure 2.5b). In the stripe SIM and HiLo images, out of focus nuclei appeared as bright rings,

a consequence of the conical lobes on the PSF, which prevented clear separation of single-cell im-

ages (Figure 2.5c). Light scattering caused the Hadamard signal to decay as a function of image

depth with a length constant of 27 𝜇m in acute brain slices (Figure 2.5d,e) and 113 𝜇m in fixed

slices. The difference in signal attenuation was attributed to decreased light scattering after the

fixation process.

To quantify the ability of Hadamard microscopy to resolve single-cell signals, we used high-

resolution confocalmicroscopy tomake ground-truthmaps of the spatial distribution of nuclei in

fixed slices densely expressing nuclear jRGECO1a. We then simulated Hadamard images of these

cells in scattering tissue and estimated the crosstalk, i.e. the spurious contribution from all other

cells to the fluorescence signal ascribed to each nucleus (Section 2.2.4.8). In cortical layer 2/3,
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Figure 2.5: Hadamard microscopy resolves individual H2B-jRGECO1a labeled neurons in
acute brain slices. (a) Two-color fluorescence maximum-intensity projections acquired from an
acute brain slice expressing H2B-jRGECO1a broadly in cortex and striatum and membrane targeted
CheRiff-TS-GFP in L5 pyramidal cells. Top: wide-field epifluorescence. Bottom: Hadamard image.
Scale bar 500 𝜇m. (b) Images acquired with different 1P computational optical sectioning meth-
ods. Images were acquired in the same sample with matched conditions (number of images, illu-
mination intensity, acquisition time). The sample comprised an acute brain slice expressing H2B-
jRGECO1a. Images show (left to right): Wide-field epifluorescence, Hadamard microscopy using
12 patterns, SIM with period 4 pixels and four phases, and HiLo microscopy using DMD-projected
speckle patterns. Scale bar 100 𝜇m. The blue box region is expanded in (c). (c) Hadamard mi-
croscopy avoids defocus lobes present using other methods. The orange arrows indicate a defo-
cused cell that is rejected by Hadamard microscopy but appears in the other techniques. All im-
ages use the same linear scale of normalized grey values. Scale bar 50 𝜇m. (d) Depth distribu-
tion of responsive cells during Hadamard functional recording, measured by high resolution con-
focal microscopy acquired after the functional measurement and registered to the Hadamard im-
ages. The depth was 32.2 ± 12.7 𝜇m (mean ± std. dev., 𝑛 = 35 neurons). (e) Depth-dependent
decay in SNR for Hadamard microscopy in acute slices. Decay length was 𝜎𝑧 = 27 𝜇m. (f) Esti-
mated distribution of crosstalk in neuronal recordings using Hadamard microscopy. Only 10% of
cells had more than 20% crosstalk (fluorescence attributable to other cells) in L2/3 (Section 2.2.4.8).
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only 10% of the cells received more than 20% crosstalk from other cells. The crosstalk was lower

in other brain regions (Figure 2.5f ). Cell nuclei had a stereotyped round and localized shape.

The degree of crosstalk could be estimated on a cell-by-cell basis via shape deviations. If desired,

cells with crosstalk beyond a threshold value could be discarded from the analysis, though this

procedure was not used here. Hadamard microscopy thus enabled optically sectioned imaging

with single-cell resolution over wide fields of view in acute brain slices.

2.3.3 Mapping excitability in acute slices

To map neural excitability, we applied Hadamard microscopy with simultaneous optogenetic

stimulation in acute mouse brain slices expressing the actuator-reporter pair. We co-injected

AAV9-hSyn-DO-H2B-jRGECO1a and AAV9-hSyn-eTsChR in cortex and striatum of wild-type

P0-2 mouse neonates (Figure 2.6a). Both proteins expressed well and were readily visualized

via Hadamard imaging in 300 𝜇m acute brain slices from 3-week-old animals (Figure 2.6b,c).

We performed Hadamard AON measurements in a region 2.3×2.3 mm, set by the size of the

expressing region. Cell signals were acquired from a depth of 32±13 𝜇m (Figure 2.5d).

To probe excitability, we exposed the slice to a series of wide-field blue stimuli of increasing

strength, interleaved withHadamard imaging ofH2B-jRGECO1awith yellow light (561 nm, 100

mW/cm2, Figure 2.6d). Hadamard images were first acquired for 2 s to establish baseline fluo-

rescence. Then a brief burst of blue light pulses (470 nm, 8 pulses, 15 mW/cm2, 5 ms duration,

20 Hz) evoked neural activity, followed by another 2 s of Hadamard imaging to record the re-

sponse. This image-stimulate-image procedure was repeated at 10 s intervals, six times, with the
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Figure 2.6: Robust AON in acute brain slices. (a) AAV9 viruses coding for hSyn-eTsChR and
hSyn-DO-H2B-jRGECO1a were co-injected in neonatal mouse cortex and striatum. (b) Maximum
intensity projection of a Hadamard z-stack of eTsChR expression in a coronal corticostriatal slice
from a P21 mouse. (c) Same as (b) in the H2B-jRGECO1a channel. (d) Fluorescence traces from
regions indicated in (e). Two cells showed optogenetically induced fluorescence transients, while a
region between the cells showed no signal. Here the sets of 11 images acquired before and after
each optogenetic stimulus were averaged to form single pre- and post-stimulus fluorescence val-
ues. Error bars represent s.e.m. over 𝑛 = 11 Hadamard images. Scale bar 25 𝜇m. F is defined
as the average intensity of the first imaging epoch and ΔF is the signal increase following blue
light stimulation. (e) Magnified view of (c) showing single-cell resolution. (f) Mean ΔF images
from striatum before (left) and after (right) addition of TTX (1 𝜇M). Images are scaled identically.
(g) Mean ΔF/F per measurement epoch from 𝑛 = 360 cells in (f) before TTX addition (black) and
after TTX addition (red). Blue light stimulation consisted of 5 pulses at 12.5 Hz of 488 nm light
at 60, 120, and 300 mW/cm2, repeated twice. (h) One slice was repeatedly stimulated and im-
aged over 78 minutes with protocol in Fig. 3. Mean ΔF images from first run (left) and last run
(right), scaled identically. (i) Average ΔF/F per measurement epoch for 𝑛 = 3,195 cells in each run
in slice shown in (h). Unless otherwise stated, all scale bars 250 𝜇m. Error bars indicate ± s.e.m.
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intensity of the blue light doubling upon each repetition to a maximum of 480 mW/cm2. This

measurement protocol reported the changes in intracellular Ca2+ concentration as a function of

optogenetic stimulus strength.

Neighboring cells often showed distinct patterns of Ca2+ dynamics, while interstitial regions

showed undetectable fluorescence (Figure 2.6d,e), confirming that Hadamard microscopy effec-

tively rejected scatter and out-of-focus background. The yellow light used for Ca2+ imaging in-

duced spurious activity in only 0.46±0.03%of cells (n=38,835 cells, 9 slices), establishing that the

imaging light only weakly activated eTsChR. The sodium channel blocker tetrodotoxin (TTX, 1

𝜇m) abolished blue light evoked responses slicewide, confirming that Ca2+ responseswere due to

action potential firing (Figure 2.6f,g) and, furthermore, that blue light-induced photoswitching

was minimal.

We tested the long-term stability of the preparation. The optogenetically induced Ca2+ signal

was stable over a 78 minute session comprising 7 repeated imaging cycles (Figure 2.6h,i). Dur-

ing this period the population-average optically evoked ΔF/F at the strongest stimulus decreased

modestly from 64 ± 0.7% to 52 ± 0.7%, 𝑛 = 3,195 cells. These results demonstrate the capability

for repeated measurements over > 1 h in a single sample.

We used a 2D peak-finding algorithm to identify 𝑛 = 6,102 responding cells in the Hadamard

images of a single brain slice (Figure 2.7a). Cells showed different patterns of response in the

striatum vs. cortex, but we also observed cell-to-cell variability within the cortex. To characterize

this variability, we applied principal components analysis (PCA) to a set of single-cell recordings.

First, we repeated the excitability measurement on 9 slices from 2 animals, recording from a to-
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Figure 2.7: Ultra-widefield AONmapping of acute brain slices. (a) Top: Stimulation and imag-
ing protocol. An FOV spanning cortex and striatum was stimulated with eight 5 ms pulses of 488 nm
light at 20 Hz with intensities of 15, 30, 60, 120, 240, and 480 mW/cm2. Bottom: heat map of 6,102
single-cell fluorescence traces acquired simultaneously. Individual fluorescence intensities traces
were normalized as F* = (F - mean(F))/std(F). White breaks separate measurements at different opto-
genetic stimulus intensities. Imaging was performed at 5.6 Hz with 100 mW/cm2 561 nm light. (b)
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defined relative to the intensity in the first imaging epoch. Scale bars 250𝜇m in (c, d) and 50𝜇m in (e).
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tal of 𝑛 = 32,103 cells across cortex and striatum. Measurement runs (comprising six measure-

stimulate-measure sequences) were repeated at 5-minute intervals, 3 times per slice. PCA iden-

tified 3 main temporal components in the single-cell fluorescence responses (Figure 2.7b,c and

Section 2.2.7.4). Examination of the PC temporal waveforms showed that PC1 measured over-

all fluorescence response amplitude, PC2 captured a left-right shift in the sigmoidal excitability

profile, and PC3 largely captured a stimulus-dependent increase in baseline fluorescence.

We then decomposed the fluorescence waveform at each pixel into its principal components

(PCs), and color-coded each pixel by its PC amplitudes (Figure 2.7d,e and Section 2.2.7.4). De-

spite coloring each pixel independently, individual cells appeared homogeneously colored in the

resulting image (Figure 2.7e), consistent with the low cell-to-cell fluorescence crosstalk. These

maps revealed striking colored bands running along the cortical layers, demonstrating different

functional responses in different brain regions. Intriguingly, some layers appeared relatively ho-

mogeneous (L2/3, L4, L6), while cells in L5 had larger cell-to-cell variations in response. These

results demonstrate that Hadamard AON canmap excitability over thousands of individual neu-

rons across large areas of acute brain slice.

2.3.4 Mapping pharmacological responses with Hadamard AON

Wide-area AONoffers a means tomap the cell type and region-specific effects of pharmacological

or other perturbations on neural excitability. We performed excitability measurements on acute

slices before and after applying the antiepileptic drugs (AEDs) retigabine (25𝜇M), carbamazepine

(100 𝜇M), and phenytoin (100 𝜇M). To quantify the drug effect, we measured the pixel-by-pixel
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Figure 2.8: Mapping effects of anti-epileptic drugs (AEDs) on excitability. (a)Maps of AED ef-
fects on excitability. Slices were measured using the excitability protocol as in Figure 2.7. The proto-
col was repeated five times before drug addition and four times after addition of carbamazepine (100
𝜇m), phenytoin (100𝜇m), or retigabine (25𝜇m). The ratio of mean optogenetically induced change in
fluorescence for each cell before (ΔF0) and after drug addition (ΔFdrug) is encoded as color in a green
to pink axis. Scale bars 250 𝜇m. (b) Average drug response (ΔFdrug/ΔF0) as a function of cortical
depth for 𝑛 = 3 slices for each drug. All striatal cells in a slice were pooled into a single bin. Data repre-
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Brain Atlas experiment #100041071 showing KCNQ3 expression in somatosensory cortex of a P28
mouse. Right: cortical depth dependence of retigabine drug effect (same as Figure 2.4b) and KCNQ3
expression level determined from in situ hybridization images of 𝑛 = 11 slices from the Allen Brain
Atlas. (d) Data from (c) showing effect of retigabine on excitability vs. KCNQ3 expression. Best fit
line is indicated in red. Error bars indicate s.e.m., treating each slice as an independent measurement.
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change in mean amplitude, ΔF, of the optogenetically induced response—a parameter close to

the first principal component that emerged from the unsupervised analysis above. Each drug had

different effects in striatum and cortex, and attenuated cortical excitability in a distinctive spatial

pattern (Figure 2.8a).

We sorted cells into bins based on their cortical depth and visualized mean AED response as a

function of cortical depth, averaged over𝑛 = 3 slices per drug (Figure 2.8b). Carbamazepine and

phenytoin, both sodium channel blockers, showed relatively uniform suppression of excitability

as a function of cortical depth, but retigabine showed a graded response, weakest in L6b and

strongest in L4.

Retigabine is a specific positive allosteric modulator of Kv7 channels, and its primary target is

thought to be the Kv7.2/7.3 heteromer 140, coded for by the genes KCNQ2 and KCNQ3. We ex-

amined theAllenBrainAtlasmapof the expression level ofKCNQ3 141, as determinedbyRNA in

situ hybridization (ISH), and found statistically significant correlation between KCNQ3 expres-

sion level and effect of retigabine (Pearson’s 𝑟 = -0.40, 95% confidence interval between -0.022 and

-0.69 obtained by bootstrapping, Figure 2.8c-d). Higher expression of KCNQ3 correlated with

greater inhibition of excitability by retigabine, as onewould expect for a potassium channel activa-

tor. An independent ISH study in adult animals reported a similar distribution of KCNQ2 and

KCNQ3 142. These results establish a connection between the Hadamard AON measurements

and the underlying pattern of ion channels.
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2.3.5 Probing functional connectivity with ultra-widefield AON

We next sought to extend the Hadamard AON platform to measurements of functional connec-

tivity. Although slicing interrupts many long-range projections, optogenetic stimulation of axon

terminals can nonetheless evoke local neurotransmitter release and postsynaptic responses 128. We

reasoned that sufficiently strong presynaptic stimulation would drive postsynaptic spikes, which

could be detected via H2B-jRGECO1a.

To achieve this goal, the channelrhodopsinmust traffic efficiently to axon terminals. We found

that expression of eTsChR was predominantly localized to the soma and dendrites (Figure 2.9a).

We thus explored CheRiff-TS-GFP (CheRiff), a blue-light sensitive, high photocurrent channel-

rhodopsin82. CheRiff trafficked well in axons (Figure 2.9b,c) and was 2.3-fold more sensitive to

blue light than eTsChR. CheRiff was also more sensitive to yellow light, raising the possibility of

spurious activation by the 561 nm imaging laser. Under typical imaging conditions (561 nm, 100

mW/cm2) CheRiff photocurrentwas 0.9%of themaximumphotocurrent (95% confidence inter-

val 0.8 to 1%,𝑛 =7 cells, Figure 2.9d), whereas eTsChRphotocurrentwas < 0.1% of itsmaximum

photocurrent (Figure 2.2f ).

We designed an experiment to express CheRiff in L5 cortico-striatal neurons following a pre-

viously described protocol 143,144, and to test the postsynaptic response via Ca2+ imaging in the

striatum. The CheRiff vector comprised CAG-DIO-CheRiff-TS-GFP (Cre-on CheRiff), which

we injected into neonatal Rbp4-Cre+/−mice to target expression to a population of excitatory L5

neurons. We concurrently injected hSyn-DO-H2B-jRGECO1a (Cre-off nuclear Ca2+ indicator)
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Figure 2.9: Mapping functional connections between neuronal subpopulations. (continues)
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(Figure 2.9 continued) Mapping functional connections between neuronal subpopulations.
(a-c) Images of axonal trafficking of eTsChR, CheRiff-TS-GFP, and ChR2(H134R)-YFP, scaled to the
same counts. Equal volumes of AAV2/9-hSyn-ChR2(H134R)-eYFP, AAV2/9-hSyn-CheRiff-TS-GFP,
and AAV2/9-hSyn-eTsChR were injected in the left hemisphere in separate mice and coronal slices of
the contralateral hemisphere were prepared after > 4 weeks. Images were acquired near the corpus
callosum with 2-photon microscopy. Scale bars 50 𝜇m in (a-c). (d) Comparison of CheRiff photocur-
rents in HEK293T cells induced by yellow (561 nm) and blue (488 nm) light. Vertical bars indicate
intensities used in acute slice experiments. The blue illumination intensity to achieve 50% activation
was 94 mW/cm2 (88, 99 mW/cm2 95% confidence interval, 𝑛 = 7 HEK cells). (e) Left: viral constructs
for mapping functional connections. Cre-dependent AAV9-CAG-DIO-CheRiff-GFP and AAV9-hSyn-
DO-H2B-jRGECO1a were co-injected in Rbp4-Cre+/− neonatal mice. Right: at P21, CheRiff-GFP
expressed in Cre+ L5 pyramidal cells, including corticostriatal projection neurons. H2B-jRGECO1a
expressed broadly in cortex and striatum. Image represents a maximum intensity projection of a Ha-
damard z-stack. Scale bar 500 𝜇m. (f) CheRiff activation by yellow (561 nm, 100 mW/cm2) light. The
image shows the difference between mean fluorescence of H2B-jRGECO1a in the 2nd and 1st second
after onset of yellow light for Ca2+ imaging. Image represents a mean of 𝑛 = 3 repetitions of the mea-
surement. Spurious CheRiff activation would cause neural firing, which would lead to an increase in
H2B-jRGECO1a fluorescence. (g) Mean ΔF induced by blue light stimulation, averaged over three
runs. (f) and (g) are scaled identically, have 250𝜇m scale bars, and have dashed lines indicating Layer
5 of the cortex. (h) Comparison of optical crosstalk for different optogenetic actuators and protocols,
as measured by percent of cells showing Ca2+ transients in response to onset of illumination with
561 nm light for fluorescence imaging. The three conditions corresponded to eTsChR in the excitabil-
ity assay (co-expression of actuator and reporter in the same neurons), CheRiff in the excitability
assay, and CheRiff in the functional connectivity assay (mutually exclusive expression of actuator
and reporter). Error bars are calculated assuming a Poisson distribution with s.e.m. = √𝑛active/𝑛total.
(i) Mean optogenetically induced fluorescence transients, ΔF, before (magenta) and after (green)
addition of excitatory blockers, NBQX (10 𝜇m) and CPP (10 𝜇m). Stimulation and imaging were
performed as in Figure 2.7. Images are the median of 3 runs before and 4 runs after adding excita-
tory blockers. Scale bar 250 𝜇m. (j) Magnified views of indicated regions in striatum and Layer 5
in (i). Scale bar 25 𝜇m. (k) Mean optogenetically induced fluorescence response, ΔF, for each cell
before, in the presence of, and during washout of excitatory blockers. Left: striatum. Right: Layer
5. Each column represents the mean optogenetically induced ΔF of an experimental protocol as in
Figure 2.7a. The slice was measured over 121 minutes (5-10 minutes between measurements, 22
minutes before last measurement). For visualization, each cell trace was normalized by its mean.
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to drive reporter expression throughout striatum and cortex (Figure 2.9e).

First, we tested the slices for spurious activity elicited by the yellow imaging light. Very few

striatal neurons showed a detectable increase in H2B-jRGECO1a signal caused by 561 nm imag-

ing illumination (0.32 ± 0.001%, 𝑛 = 3137 cells, 2 slices, Figure 2.9f,g), confirming that the yel-

low light did not excite axon terminals enough to drive postsynaptic spikes in most cases. This

crosstalk performance is not significantly different from that in the eTsChR-based excitabilitymea-

surements described above (0.46 ± 0.03%, 𝑛 = 38,835 cells, 9 slices, 𝑝 = 0.25, two-proportion

𝑧-test, Figure 2.9h). In excitability-style measurements with CheRiff, a significantly larger pro-

portion of neurons showed imaging light-induced activation (2.3 ± 0.5%, 𝑛 = 944 cells, 2 slices,

𝑝 = 8×10−10). Thus, the superior axonal trafficking of CheRiff made it the preferred actuator for

functional connectivity measurements, while the lower yellow-light crosstalk of eTsChR made it

the preferred actuator for excitability measurements.

We then repeated the blue-light stimulation and imaging protocol previously used for excitabil-

ity measurements while monitoring downstream responses in the striatum. Blue light induced

nuclear Ca2+ transients across the cortex and striatum (Figure 2.9i). Blockers of excitatory trans-

mission, NBQX and CPP, reversibly eliminated the responses in the striatum, Layer 6, and Layer

2/3, confirming that these responses were synaptically evoked (Figure 2.9i) and that there was

negligible blue light crosstalk into the fluorescence signals.

To our surprise, addition of NBQX and CPP reversibly increased the optogenetically induced

activity in a population of cells in L5 (Figure 2.9j,k). These cells showed little or no response

to stimulation prior to addition of synaptic blockers (Figure 2.9k). The location of these cells
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amidst the Rbp4 population suggested that these cells expressed both the actuator and reporter

(likely a consequence of imperfect silencing of DO-H2B-jRGECO1a in Rbp4-Cre+ neurons 145).

The increase in excitability upon excitatory blockade then implies a disinhibitory mechanism, i.e.

that these L5 cells received disynaptic inhibition fromRbp4-Cre labeledL5pyramidal cells, which

was relieved under excitatory blockade. The remaining cells in L5 showed a reversible decrease

of activity in the presence of excitatory synaptic blockers, similar to the phenotypes in striatum

and other cortical layers. These intermixed responses highlight the importance of performing

single cell resolution measurements with Hadamard microscopy. Further, although Hadamard

microscopy of jRGECO1a can only study supra-threshold responses, these results shown that ju-

dicious pharmacological applications can dissect a system’s functional connectivity.

2.3.6 High-speed Hadamard AON with compressed sensing

Finally, we illustrate that Hadamard AON can be performed at high speed by using recently a

complementary technique using compressed sensing, detailed in Chapter 3. The core idea is to

take advantage of the low-rank dynamics of fluorescence fluctuations in neuronal samples. Since

each neuron covers multiple camera pixels, every image has redundant information. In the con-

text of a sufficiently long recording, a pair of images comprising a singleHadamard pattern and its

complement contain enough information to infer the images that would have been recorded un-

der illumination with any other Hadamard pattern. By inferring the complete set of Hadamard

images for every pair of camera frames, this approach enables optically sectioned reconstructions

at half of the camera frame-rate. Figure 2.10 illustrates this approach. The sample comprised a
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Figure 2.10: High-speed wide-area AON using Compressed Hadamard Imaging. (a) Left:
PCA-colored map showing response of nuclear jRGECO1a to stepped optogenetic stimulation across
the hippocampal formation. Sub: Subiculum, DG: Dentate gyrus, CA1/CA3: Cornu ammonis. Scale
bar 0.5 mm. Right: Magnified view of the cyan rectangle shows the location of a background
region (1, gray), three responding cells (2-4, colored), and a bright, non-responding cell (5, gray).
Scale bar 20 𝜇m. Color saturation was increased by 100% for display. (b) Comparison of fluo-
rescence traces extracted from ROIs in (a) from the same recording, using three different analy-
ses. Amplitude was scaled to normalize the baseline intensity of the brightest ROI. Left: Wide-
field data calculated as the sum of paired complementary patterns. Signals had a time resolution
of 33 Hz, but included out-of-focus background. Camera framerate was 66 Hz. Middle: Con-
ventional Hadamard analysis produced one optical section every 48 frames, possibly with errors
due to changing cell intensities during the pattern period. Right: Compressed Hadamard analy-
sis obtained high-speed optically sectioned movies with 33 Hz framerate. Both Hadamard opti-
cal sections show a zero-centered value for the background ROI (1) and flat brightness for a non-
responding cell (5), but distinct optogenetic activation thresholds for each responding cell (2-4).
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hippocampal slice co-expressing eTsChR and nuclear-localized jRGECO1a. To ensure that each

nucleus was illuminated bymultiple DMDpixels, we used a 10x objective (Section 2.2.4.5). The

optogenetic stimulation was as in Figures 2.6 and 2.7. The camera and DMD-patterned illumi-

nation were synchronized to run at 66 Hz.

Figure 2.10a shows a Hadamard image of the whole field of view, in which nuclei have been

color-coded by the principal component amplitudes of their dynamic response, as in Figure 2.7d.

A close-up image (Figure 2.10b) shows the individually resolved nuclei. A wide-field image se-

quence was calculated by averaging together pairs of frames with complementary illumination

patterns. Hadamard reconstructions were calculated via the standard approach outlined above,

and via the compressed sensing approach.

Regions 1 and 5 in Figure 2.10a corresponded to a cell-free interstitial region and a non-

responsive (presumably dead) very bright cell, respectively, whereas regions 2 – 4 corresponded

to optogenetically responsive cells. Figure 2.10b shows that the wide-field images had high time

resolution, but suffered from out-of-focus crosstalk: the gray traces from regions 1 and 5 showed

spurious optogenetically induced responses. In the conventional Hadamard movie, the intensity

traces from regions 1 and 5 showed constant fluorescence, confirming effective background rejec-

tion. But these extracted traces had low time resolution. In the compressed sensing Hadamard

movie, the intensity traces from regions 1 and 5 had the same time resolution as in the wide-field

movie (33 Hz), but lacked background crosstalk as in the conventional Hadamard movie. Thus

compressed Hadamard imaging provides a means to achieve simultaneously optical sectioning

and high time resolution.
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2.4 Discussion

Through detailed photophysical characterization of optogenetic actuators and reporters, we iden-

tified pairs that can be used in tandem with minimal 1P crosstalk. A pairing of CheRiff and jR-

CaMP1b was recently demonstrated in cultured neurons, but crosstalk was not measured quanti-

tatively and the genetic constructs were not tested in tissue 146. Despite the well reported photo-

physical blue light artifacts in jRGECO1a, we found that sufficiently sensitive optogenetic actua-

tors could induce neuronal responses at blue light intensities where these artifacts were minimal.

The far blue-shifted channelrhodopsin, eTsChR, enabled measurements of intrinsic excitability,

and the highly sensitive channelrhodopsin, CheRiff, enabled measurements of functional con-

nectivity, in both cases with minimal crosstalk from the yellow imaging laser. Finally, nuclear lo-

calization of the reporter, combinedwithHadamard structured illuminationmicroscopy enabled

resolution of single-cell signals across wide areas of brain slice. The resulting toolbox is well suited

for studying suprathreshold phenotypes in acute brain slice, such as excitability of single neurons

and functional connectivity of strong excitatory connections. These tools enable wide-area map-

ping of these properties in brain tissue, and studies on the effects of perturbations thereon.

Questions of where and how neuroactive compounds affect neuronal function are difficult to

answer with conventional techniques. Typically, compound distribution is investigated by radio-

graphic labeling experiments. Such results are convolved with possible nonspecific binding of the

molecule and with expression of the target in the neuropil, preventing single cell identification.

The 1P AON technique provides a high spatial resolution functional alternative to radiographic
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mapping. We show differential response profiles for three AEDs—one molecularly specific drug,

retigabine, whose response profile matched its known target distribution, and two non-specific

drugs, carbamazepine and phenytoin. Measurements on other drugs may provide insights into

their specific cellular and regional targets. HadamardAON could also be used to probe the effects

of neuropeptides, neuromodulators, hormones, genetic mutations, or environmental perturba-

tions (e.g. temperature, oxygen, metabolites) on brain-wide patterns of neural excitability.

By extending these assays to measurements of functional connectivity, we show that this 1P

AON toolbox can be also be used for circuit dissection. The all-optical connectivity assay of

Figure 2.9 shows that Rbp4-Cre positive neurons have a strong excitatory drive across striatum,

consistent with previous results 147. The net effect of layer 5 stimulation on other cortical layers

was not previously well established—most L5 neurons are excitatory but also recruit strong inhi-

bition via parvalbumin and somatostatin neurons across the cortical column 124,148. We found a

clear net excitatory effect of Rbp4-Cre neuron activation inmany cells of L2/3 and L6a of the cor-

tex. Within L5 we found a heterogeneous response, where inhibition outweighed excitation in

Rbp4-cre positive neurons (and possibly others which remained nonresponsive during the entire

experiment) but excitation outweighed inhibition in other neurons in L5. While this paper was

in review, another study interrogated the same circuit with optogenetic stimulation and simulta-

neous triple whole cell patch clamp, with broadly similar conclusions 149, though the difficulty of

patch clamp limited the measurements to a few tens of neurons overall.

Both 1P AON andHadamardmicroscopy can be used independently and neither technique is

limited to neuroscience applications. The far blue spectrum and excellent sensitivity of eTSChR
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open thepossibility topair itwith red-shifted fluorescent sensors ofmanyothermodalities, such as

pH, cyclic AMP, or neurotransmitters. The broad spectral range ofHadamardmicroscopy opens

possibilities for high-speed optically sectioned imaging of many different fluorescent reporters,

including simultaneous imaging of multiple modalities.

There are many microscopy techniques which could in principle be used for AON in brain

slices. Here we briefly outline the factors which led us to develop Hadamard microscopy rather

than using an established technique. Spinning disk confocal microscopy (Toomre et al., ) in prin-

ciple provides high temporal resolution and good optical sectioning, but existing spinning disk

optics lack sufficient etendue to capture the FOV andNA of the wide-area objective. One could

mimic the function of a spinning disk system by activating individual DMD pixels sequentially

in a tiled array, acquiring one image per illumination pattern, and then using software spatial fil-

tering to keep only the in-focus component of each point illumination pattern. This approach

would yield the same PSF as Hadamard microscopy.

Unmixing techniques such as Hadamard microscopy cannot unmix shot noise. Here we com-

pare the shot noise properties of the Hadamard images relative to DMD-based multi-focal con-

focal. Let 𝑆 be the mean number of signal photons acquired in one camera pixel in one frame

when the corresponding DMD pixel is turned on. Let 𝛼 be the mean number of background

photons acquired in camera pixel 𝑖 in one frame when DMD pixel 𝑗 ≠ 𝑖 is turned on, averaged

over all 𝑗 within a block of𝑁 pixels. A simple analysis of the shot noise implies that inmulti-focal

confocal (i.e. one DMD pixel turned on at a time) the shot noise-limited signal-to-noise ratio is

SNR = √𝑆 . A short calculation shows that in Hadamard microscopy, the shot noise-limited
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SNR is approximately: SNR = 𝑆/√2𝛼.

If 𝛼 < 𝑆/2, then Hadamard is better; otherwise multi-focal confocal is better. We found ex-

perimentally that for𝑁 = 12, 𝛼/𝑆 = 0.51, indicating comparable shot noise for the multi-focal

and Hadamard approaches. For𝑁 = 64, we measured 𝛼/𝑆 = 0.26, indicating superior perfor-

mance of Hadamard over multi-focal confocal. In these comparisons, the total optical dose into

the sample is greater for Hadamard than for multifocal. The duty cycle of illumination is 1/𝑁

for multifocal confocal, and 1/2 for Hadamard, so for𝑁 = 12, Hadamard exposes the sample

to 6-fold more light, and for𝑁 = 64, Hadamard uses 32-fold more light. While photobleaching

and phototoxicity were not significant factors in the present experiments, the presence of these

effects may favor multifocal confocal.

As discussed above, stripe SIM and HiLo techniques are alternatives which could be imple-

mented with the sameDMDoptics as Hadamardmicroscopy. The improved PSF shape (relative

to stripe SIM and HiLo) and the absence of static illumination noise (relative to HiLo) favored

Hadamardmicroscopy. The contributions of background photons to the shot noise are identical

in all three techniques. The lower temporal resolution of Hadamard relative to the other SIM

techniques did not constrain the ability to map nuclear Ca2+ dynamics, though better time res-

olution may be needed for other fluorescent reporters. Improvement in the time resolution of

Hadamard microscopy are possible via compressed sensing techniques, as shown inChapter 3.

2Pmesoscopes currently hold the record for most single neurons (∼3000) recorded simultane-

ously in tissue76. 2P-mesoscopes have greater depth penetration than SIM techniques, making

themmore suitable for in vivo studies at present. Point-scanning basedmesoscopes have achieved

87



pixel rates of∼ 2× 107/s over 0.6×0.6mmFOVs but the requirement to translate the beam long

distances limits pixel rates over large FOVs (4.4×4.2mm) to 5.6× 106/s. Acousto-optical steering

allows fast 2P random-access imaging 150, but this technique has only been demonstrated in a FOV

of 0.5 mm, limited by the etendue of the acousto-optical deflectors. With 12-pattern Hadamard,

we achieved comparable data rates of 1.2 × 107/s over a 4.6 × 2.3 mm FOV, with optically sec-

tioned single-cell resolution. With improved control software to synchronizeHadamard patterns

to the rolling shutter of the camera, pixel rates of 3.3 × 107 pixels/s over the entire 4.6 × 4.6 mm

FOV would be possible with current camera technology. Finally, in contrast to 2P-mesoscopes,

Hadamard microscopy is readily implemented with inexpensive LED or diode laser illumination

across a broad range of excitation wavelengths.

Evenwhen imaging in acute slices, onemust achieve sufficient depth penetration to avoid dam-

aged cells near the surface. Due to the great effort and low throughput of manual patch clamp

measurements, it is typical to record at a depthof 50𝜇morgreater tominimize the risk of patching

an unhealthy cell, though recent protocols suggest 30𝜇m is sufficient 123. Our approach includes

procedures to identify and exclude dead (non-responsive) cells. Hadamard AON measures large

enough numbers of cells that one can afford to discard a few unhealthy cells, while still main-

taining excellent statistics. The stable excitability and anticipated responses to tool pharmacology

(Figure 2.6) establish that the cells assayed in our methods are adequately healthy from a func-

tional perspective, despite being only∼30 𝜇m below the surface.

For precisely targeted single-cell stimulation, 2P optics are essential, but for wide-area optoge-

netic stimulation, 1P optics are preferable, as follows: 2P optogenetic stimulation requires time-
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average optical powers of 20 – 80 mW/cell99,100,112. Maximal safe steady-state 2P optical power

into intact brain tissue is ∼200 mW 114, limiting simultaneous 2P stimulation to at most a few

tens of neurons at a time. 1P optogenetic stimulation requires approximately 106-fold lower time-

average power (∼50 nW/cell)82, and thus is readily applied over wide areas of tissue to many

thousands of cells simultaneously.

If a microscope can measure𝑁 cells in parallel, a measurement protocol takes time 𝜏 , and an

acute slice is viable for time𝑇 , then the total number of cells that canbemeasured is𝑁𝑇 /𝜏 . A typ-

ical excitabilitymeasurement (including focusing and saving data) takes 𝜏 ∼ 2min. In the present

work, the field of viewwas limited by the range of viral gene expression, but in transgenic animals

or with recently developed systemic gene delivery techniques 151, functional measurements could

be made across an entire brain slice. With the current FOV, Hadamard microscopy could tile a

complete sagittal slice in 7 acquisitions, or∼14min. Brain slices typically remain viable for 𝑇 ≈ 5

hrs. Thus one could record from∼20 slices, enough to create a brain-wide functional map. Such

amapping technique could provide an unbiased approach to studying neuronal excitability, func-

tional connectivity, and pharmacology across an entire brain.

Data and code availability

Constructswill bemade available onAddgene. Code forHadamardpattern generation and image

reconstruction, as well as raw data examples are linked in Section 2.2.5.
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You should call it entropy, ... no one really knows what en-

tropy ॹ, so in a debate you will always have the advantage.

John von Neumann to Claude Shannon 153

3
Compressed Hadamard microscopy

Structured illumination microscopy achieves optical sectioning via differential modula-

tion of in-focus and out-of-focus contributions to an image. Multiple wide-field camera

images are analyzed to recreate anoptical section. The requirement formultiple camera frames per

image entails a loss of temporal resolution compared to conventional wide-field imaging. Here

we describe a computational structured illumination imaging scheme, Compressed Hadamard

Imaging (CHI), that achieves simultaneously high spatial and temporal resolution for optical sec-

tioning of three-dimensional samples with low-rank dynamics (e.g. neurons labeled with fluores-

cent activity reporters). We validate the techniquewith numerical simulations, and then illustrate



with wide-area optically sectioned recordings of membrane voltage dynamics in mouse neurons

in an acute brain slice and of calcium dynamics in zebrafish brain in vivo.

3.1 Introduction

Fluorescencemicroscopy of dynamic biological samples is a powerful tool for studying physiology

in its native context. An ever growing repertoire of fluorescent indicators reports on physiological

variables, such as pH, calcium, glutamate, and membrane voltage 154,155. One would like to mea-

sure these signals with simultaneously high spatial resolution, high temporal resolution, optical

sectioning and wide field of view. However, this task is challenging in turbid tissues such as the

brain, because background fluorescence and light scatteringmix in-focus and out-of-focus signals.

Optical sectioning techniques often entail tradeoffs between imaging parameters. For instance,

one- and two-photon point scanning techniques provide high spatial resolution and good back-

ground rejection, but are limited in imaging speed by their point-scanning nature, and ultimately

by the electronic excited state lifetime of the fluorophores which sets the minimum time between

pixels to ∼10 ns for high-brightness fluorophores whose lifetimes are typically 2-4 ns. Camera-

based systems offer intrinsically high data rates, good sensitivity and are readily coupledwithwide-

area optics, but do not natively provide optical sectioning. Spinning disk confocal microscopy

provides high frame rates and optical sectioning, but the microlens array used in this technique

does not provide adequate etendue for high light collection efficiency over a wide field of view.

Camera based optical sectioning using structured illumination has been used for decades to
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reject background signals48. In structured illuminationmicroscopy (SIM) one projects a series of

spatially patterned beams onto the image plane and uses a camera to acquire wide-field fluores-

cence images 156. In-focus and out-of-focus contributions to the images are modulated differently

between illumination patterns, enabling computation of an optical section. SIM was first imple-

mented with multiple phases of sinusoidal illumination patterns, together with a simple demod-

ulation algorithm (“stripe SIM”)51. Interest in physiological signals such as neuronal activity has

motivated approaches to increase time resolution by acquiring fewer frames to calculate an optical

section. A fast SIM technique (HiLo) used only two illuminationpatterns: one (pseudo)-random

speckle pattern and one homogeneous pattern 139,58,55.

We recently introduced a SIM technique calledHadamardmicroscopy, where adjacent regions

of the focal plane were illuminated with a set of temporally orthogonal patterns, and optically

sectioned images were computed via matched filtering of the corresponding images, as detailed in

Chapter 2. Hadamardmicroscopywas slower than the other SIM techniques because it required

many camera frames (typically 12) to yield a single optical section. The maximum frame rate was

5.6 Hz in our recent implementation. This speed was fast enough to image a nuclear-localized

Ca2+ indicator, but led to artifacts for signal sources whose intensity changed substantially during

the time to acquire an optical section.

All three SIM techniques (stripe,HiLo, andHadamard) yielded point-spread functions (PSFs)

with identical full-width at half maximum (FWHM) along the axial and lateral line-sections, but

Hadamard microscopy outperformed the other SIM techniques by other measures. The stripe

SIM and HiLo PSFs had substantial out-of-focus conical lobes (lying neither along the axial nor
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lateral directions), while Hadamard did not. These lobes are an unavoidable consequence of the

use of a small number of structured illumination patterns: a fluorescent source that is simulta-

neously axially and laterally displaced from a given in-focus pixel will emit some light along the

same rays as the source at the targeted pixel. There is no way, even in principle, to distinguish

these rays. By using many illumination patterns, Hadamard microscopy resolves this ambiguity

in signal assignment.

In images of acute brain slices, the conical lobes in stripe SIM and HiLo caused out-of-focus

cells to have a ‘halo’ structure, which prevented clear resolution of single cells. Further, the

(pseudo)-random illumination in HiLo imprinted static random noise, beyond the unavoidable

photon shot-noise. This technical noise has been analyzed previously 138.

Ideally, one would like to combine the compact and low-noise PSF of Hadamard microscopy

and the high time resolution of HiLo. Here we introduce a variant of Hadamard microscopy,

termed Compressed Hadamard Imaging (CHI), which produces an optically sectioned movie at

half the frame rate of the camera, matching the time resolution of HiLo. To achieve this dra-

matic speedup, we use our foreknowledge of the statistical structure of neural recordings. Namely,

movies of neuronal dynamics tend to have a low-rank decomposition. The complete set of pixel

intensities as a function of space and time can be approximately decomposed into a sum of im-

ages of individual neurons, eachmodulated with its own time-trace. Each neuron coversmultiple

pixels, so while a complete image of the neuron is not acquired in each camera frame, enough

information is recorded to obtain an estimate of its fluorescence. Recent advances in microscopy

signal processing have exploited the spatiotemporal structure of neuronal signals for unmixing,
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parallel detection, and computational volume reconstruction 157–159.

We validate the technique of CHI by applying it to simulated movies of three-dimensional

samples where the ground-truths of the source shapes and source dynamics are known. Then

we apply this method to neuronal recordings using a genetically-encoded membrane voltage in-

dicator in acute mouse brain slices, and to a genetically encoded cytosolic Ca2+ indicator in live

zebrafish brain. These demonstrations achieve a ∼100-fold improvement in the time resolution

of Hadamard microscopy compared to the implementation described in Chapter 2, and match

the speed of HiLo imaging.

3.2 Methods

3.2.1 Computational modeling

We validated Compressed Hadamard Imaging using numerical simulations of the optical system

and of a dynamic brain-like three-dimensional sample.

3.2.1.1 Simulating the sample.

We simulated a 25 × 25 × 24 𝜇m volume comprised of dynamically fluctuating cells in a fore-

ground volume, plus static intensity cells in a background plane. The foreground volumewas dis-

cretized into 4 parallel planes at depths 𝑧 = 0, 4, 8, and 12𝜇m. 24 cells were arranged among these

planes, 14 of which changed intensity over time. Each cell was represented by a 2D ellipse with a

major axis that was selected uniformly at randombetween 1.35𝜇mand 1.65𝜇m, and aminor axis
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selected similarly between 0.9𝜇mand 1.1𝜇m, and random in-plane orientation. Cells in the same

foreground plane were not allowed to overlap. The background plane was located at 𝑧 = 24𝜇m,

and included 100 static cells, determined as in the foreground planes except that overlaps were

allowed. For all cells, the position, intensity, and orientation were randomly determined within

predefined ranges. Each plane was sampled on a 64× 64 equispaced grid (Δ𝑥 = Δ𝑦 = 0.40𝜇m).

Camera images were simulated with the same dimensions and spacing.

Each active cell was assigned a firing pattern, drawn from a shifted exponential distribution of

inter-spike intervals with a decay parameter of 2 s and minimum interval of 50 ms. The mean

firing rate per cell was thus once per 2.05 s. Each spike drove a uniform increase in cell bright-

ness. The fluorescence timecourse of cell 𝑖 was computed by convolving the firing times with an

exponential response function, of the form 𝑎𝑖 𝑡 𝑒−𝑡/𝜏 for 𝑡 > 0 with 𝜏 = 500 ms. The response

amplitude 𝑎𝑖 of cell 𝑖 was selected from a uniform distribution on [0.75,1]. These parameters

resulted in dynamic cells with an expected time-averaged intensity of approximately 1/2 of their

maximum amplitude.

3.2.1.2 Simulating the optical system.

Themicroscope was modeled as a space-invariant intensity-linear system comprising an illumina-

tion component, which projected patterned illumination onto the sample, and a collection com-

ponent, which received light and formed an image in the camera. In experiments, the patterns of

illumination were created by a digital micromirror device (DMD) which modulated a laser beam.

The plane of the DMD was re-imaged onto the focal plane of the microscope.
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Illumination and coding patterns: The illumination patterns comprised binary arrays

on a rectangular gridwith spacing corresponding to thepixel size of theDMDwhenprojected into

the focal plane at 𝑧 = 0. In our simulations, which were matched to an experimental apparatus,

each DMDpixel projected onto an area of≈ 0.8𝜇m×0.8𝜇m. Thus eachDMDpixel mapped to

2 × 2 pixels on the camera plane.

The illuminationpattern on each source planewas calculated byperforming a discrete convolu-

tion between the binary code at 𝑧 = 0 and a 3-dimensional illumination PSF, 𝑝𝐼 , corresponding

to a Gaussian beam focused at 𝑧 = 0 given by

𝑝𝐼 ( ⃗𝑟 , 𝑧) = 𝐼0 (
𝑤0
𝑤(𝑧))

2
exp (−2| ⃗𝑟 |2

𝑤(𝑧)2 ) , (3.1)

where ⃗𝑟 represents a position on the sampled 𝑥𝑦 -plane, 𝐼0 is the intensity at the center of the

beam, set to 2/𝜋𝑤 2
0 to normalize the transversal integral, and

𝑤(𝑧) = 𝑤0√1 + ( 𝑧𝑧𝑅
)
2

with 𝜆 = 488 nm and 𝑤0 = 0.75 𝜇m. The Rayleigh range is defined as 𝑧𝑅 = 𝜋 𝑤 2
0/𝜆. For the

present example, 𝑧𝑅 = 3.62 𝜇m.

The fluorescence emitted in each source plane was obtained by a point-wise multiplication

between the illumination and the brightness of the cells.
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Collection: Images were formed by convolving the emitted fluorescence across all source

planes with a 3-dimensional PSF focused at 𝑧 = 0, assumed to be the same as the illumination

PSF (Equation 3.1).

Confocal simulation: To characterize performance of different dynamic estimation meth-

ods, simulated results were compared with a simulated confocal movie. This movie consisted of

an instantaneously acquired optical section of the simulated sample at each timepoint, resulting

from 𝑧-integrating the sample convolved with a 3-dimensional PSF focused at 𝑧 = 0, assumed

to be the product of illumination and collection PSFs. The PSFs were assumed to be Gaussian

(Equation 3.1) with widths set by the combination of diffraction andDMDor camera pixel size,

respectively. The calculation in Appendix B gives 𝑤0 = 1.13 𝜇m for excitation PSF width and

0.77 𝜇m for collection PSF width. This collection PSF is equivalent to setting the confocal pin-

hole diameter to 1 Airy Unit= 1.21𝜋𝑤0, corresponding to 2.92 𝜇m at the sample. Confocal sim-

ulations were scaled to match the amplitude of reconstructed CHI sections at long code lengths.

With this scaling, the mean intensity of raw camera frames in CHI was 11.36 fold larger than the

mean intensity of confocal signals, reflecting the fact that CHI removes background computation-

ally while confocal microscopy does so physically.

3.2.1.3 Sampling.

A sequence of𝑁𝑡 camera images was simulated, each with a distinct illumination pattern, from

𝑡 = 0 s to 𝑡 = 30 s. Cell firing patterns were simulated from 𝑡 = −8 s to achieve a steady activity
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by 𝑡 = 0 s. The simulations assumed ideal behavior for the DMD (instantaneous switching of

patterns) and for the camera (instantaneous acquisition of images). In some simulationswe added

Poisson shot noise to each pixel, with variance equal to the counts.

3.2.2 Microscope

Imaging experiments used a custom epi-fluorescence microscope equipped with a 488 nm laser

(CoherentOBIS) under intensity control by an acousto-optic tunable filter (Gooch andHousego

48058-2.5-.55) and a 640nm laser (DILASMB-638.3-8C-T25-SS4.3). Both colorswere patterned

by a digital micromirror device (VIALUX V-7000), where half of the chip was used to pattern

each wavelength, permitting simultaneous independent patterning of both colors. The two pat-

terned beams were focused independently to correct for chromatic aberrations, and then com-

bined via a dichroic beam splitter. The beams were then reflected by a dichroic mirror (Semrock

Di01-R405/488/561/635). An astigmatic aberration due to reflection off a warped dichroic was

compensated by a cylindrical pair tube lens. Excitation light was focused on the sample from the

top by a 20x water-immersion objective (Olympus XLUMPLFLN, NA 1.0), then imaged onto

a sCMOS camera (Hamamatsu Orca Flash 4.0). The imaging magnification was 20x, and projec-

tionmagnificationwas 28x, resulting in camera andDMDpixel linear dimensions of 325 nm and

493 nm in the sample plane, respectively.

To synchronize illumination and imaging, the DMD was triggered to expose the sample only

during the full camera exposure of a limited field of view (FOV), thus avoiding rolling shutter

artifacts. For voltage imaging, the camera was set to record a FOV comprising 48 rows at 1 kHz
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framerate, allowing 760 𝜇s of full exposure in each frame, over a FOV 15.6 𝜇m along the camera

rows. This configuration constrained the illumination time to 76% of the total time. As pat-

terns turned 50% of the pixels on, there was overall 38% time-averaged use of the available laser

power. For Ca2+ imaging, a FOV with 1264 camera rows was acquired at 100 Hz, with 3.7 ms of

illumination exposure time, and illumination efficiency 18%. In both cases, the FOV along the

camera columns was not limited by framerate. The camera was configured to run in synchronous

acquisitionmode and to output a 100 kHzmaster clock signal which synchronized the rest of the

apparatus.

3.2.3 Animal experiments

All animal procedures were conducted following the National Institutes of Health (NIH) guide

for the care and use of laboratory animals and approved by the Institutional Animal Care andUse

Committee (IACUC) at Harvard University.

3.2.3.1 Brain slice preparation.

Amouse (C57BL/6, Charles River Labs #027) of age P1 was anesthetized in ice for 5 minutes and

then transcranially injected with AAV2/9 that codes for a Cre-dependent soma-localized trans-

membrane Archaerhodopsin-derived voltage indicator and a soma-localized channelrhodopsin

(1.1 × 1012 GC/mL). The animal was simultaneously injected with AAV2/9 encoding hSynapsin-

Cre to regulate the density of expression of the Cre-dependent construct (8.4× 109 GC/mL,Mas-

sachusetts Eye and Ear Infirmary Virus Core).
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At age P40 the animal was anesthetized by isoflurane inhalation, then transcardially perfused

with ice-cold slicing solution containing (in mM): 110 choline chloride, 25 NaHCO3, 2.5 KCl,

7 MgCl2, 0.5 CaCl2, 1.25 NaH2PO4, 25 glucose, 11.6 ascorbic acid, and 3.1 pyruvic acid (310

mOsm/kg). The brain was cut into 300 𝜇m thickness slices using a vibratome (Leica VT1200S)

and transferred to an artificial cerebrospinal fluid (aCSF) bath containing (in mM): 125 NaCl,

2.5 KCl, 25 NaHCO3, 2 CaCl2, 1 MgCl2, 1.25 NaH2PO4, 25 glucose (295 mOsm/kg), initially

warmed for 45min at 34 ∘C, then at room temperature, andperfused at 1mL/minduring imaging

experiments. Solutions were continuously bubbled with carbogen (95% O2 and 5% CO2).

3.2.3.2 Zebrafish preparation.

Zebrafish expressing cytosolic GCaMP6f under a neuronal promoter were used (a gift from Flo-

rian Engert, Tg(elavl3:GCaMP6f)jf1 160). At day 4 post fertilization a fishwas immersed for 10min

in a 1 mg/mL solution of 𝛼-bungarotoxin (Life technologies B1601) to paralyze it, then embed-

ded in 1.5% low melting point agarose in the 10 mm well of a glass-bottom 35 mm cell culture

dish. The animal was incubated for 45 min in 75 mMpentylenetetrazole (PTZ, Sigma P6500) to

induce seizure-like brain activity immediately prior to imaging.

3.2.4 Illumination patterns

Series of Hadamard-coded patterns were designed to illuminate neighboring sample locations

with orthogonal time-sequences of intensity. Let𝑯 denote a Hadamard matrix of size𝑚 with

elements in {−1, 1} satisfying𝑯 𝑇𝑯 = 𝑚 𝑰𝑚 , where 𝑰𝑚 is the identity of size 𝑚, and having
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Hadamard optical sectioning microscopy. a) A microscope projects orthogonal functions of illumination vs. time 
in neighboring regions of the sample. Light is modulated by a DMD and measured with a Camera. b) Hadamard 
codes are tiled to fill the image FOV, and a random binary mask inverts 50\% of pixels to reduce crosstalk 
between repeated code locations. c) Raw images from a tissue sample are demodulated by matched filtering 
with raw data from a calibration sample. Filtered correlation maps are summed to form an optical section. Raw 
tissue data are summed to obtain a widefield image. 
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Figure 3.1: Hadamard optical sectioningmicroscopy. (a)Amicroscope projects orthogonal func-
tions of illumination vs. time in neighboring regions of the sample. Light is modulated by a DMD
and measured with a Camera. (b) Hadamard codes are tiled to fill the image FOV, and a random bi-
nary mask inverts 50% of pixels to reduce crosstalk between repeated code locations. (c) Raw images
from a tissue sample are demodulated by matched filtering with raw data from a calibration sample.
Filtered correlation maps are summed to form an optical section. Raw tissue data are summed to
obtain a widefield image.

ones in the first column and first row. The illumination 𝑃𝑖𝑗 of sequence 𝑖 at time-step 𝑗 was

defined as 𝑃𝑖𝑗 = (𝐻 ′
𝑖𝑗 + 1)/2, where 𝑯 ′ is the matrix formed by the last 𝑚 − 1 columns of

𝑯 . Orthogonality between illumination codes is verified by 𝑷 𝑇𝑯 ′ = (𝑚/2) 𝑰𝑚−1. These

codes were tiled spatially, assigning code 𝑘𝑖𝑗 ∈ {1, ..., 𝑚 − 1} to the projector pixel (𝑖 , 𝑗 ) with

𝑘𝑖𝑗 = mod(𝑖 ⋅𝑞 +𝑗 ,𝑚− 1)+ 1, where 𝑞 was an offset parameter tomaximize the spatial separa-

tion of repeating codes. To further reduce spurious crosstalk between repeating codes, a random

binary mask 𝐵 inverted the polarity of 50% of projected pixels. Ca2+ activity was measured set-

ting 𝑚 = 36 and 𝑞 = 10, while voltage recordings used 𝑚 = 20 and 𝑞 = 5. This process is

depicted in Figure 3.1b.

104



3.2.5 Hadamard demodulation

Hadamard microscopy typically entails a tradeoff between quality of optical sectioning (requir-

ing more illumination patterns) and temporal resolution (requiring fewer illumination patterns).

First we review briefly the image reconstruction algorithm for Hadamard microscopy, then we

show how to relax this tradeoff by taking advantage of the low-rank statistical structure of the

underlying signals.

In Hadamard microscopy, one first acquires a set of calibration images 𝑪 by projecting the

illumination patterns onto a flat and homogeneous fluorescent film (often a coverslipwith a stripe

of fluorescent highlighter ink). Throughout this document, a video sequence of𝐿 frames will be

represented as a matrix in which each column is a vectorized video frame, as 𝑪 = [𝒄1…𝒄𝐿]. In

this case, 𝒄𝑝 denotes the video frame corresponding to the 𝑝 -th Hadamard calibration pattern.

One then repeats the acquisition procedure on the real sample. Let 𝑿 = [𝒙 1…𝒙𝐿] denote the

resulting raw camera video. For themoment, we assume that both𝑪 and𝑿 have length𝐿, equal

to one repetition of the Hadamard code. The algorithm to compute a Hadamard optical section

is:

𝒙𝑆 ∶= ∑𝐿
𝑝=1 𝛿 𝒄

𝑝 ⊙ 𝒙𝑝

where 𝛿 𝒄𝑝 = 𝒄𝑝−⟨𝑪⟩𝐿 represents the deviation of eachpixel from its average over all frames, and

⊙ represents the entry-wise product between two arrays. This process is depicted in Figure 3.1c.
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Multiple sets of 𝐿 images can be concatenated to construct an optically sectioned movie, albeit

with a frame rate𝐿-fold slower than the raw video.

3.2.6 Theory of dynamic optical sectioning

Our objective is to devise a practical optical sectioning procedure that matches the performance

of an idealized procedure that we now describe. Suppose we had access through an oracle to a set

of coded video sequences 𝑿 𝑝 for all 𝑝 , i.e. at each time 𝑡 we had access to images of the sample

illuminatedby all𝐿 differentHadamardpatterns. In this casewe couldperformoptical sectioning

at the full frame rate by using theHadamard image reconstruction algorithm described above for

each time 𝑡 .

This idealized method suggests an approach to attaining similar performance with physically

attainable data. From a given recording𝑿 , we seek to estimate all video sequences𝑿 𝑝 where the

sample has been illuminatedwith a fixed pattern across all frames. If we can perform this estimate

for each 𝑝 then we can reconstruct the high time-resolution optically sectioned movie.

Let 𝑿𝑤 be the movie that would have been acquired with homogeneous wide-field illumina-

tion, i.e. conventional epifluorescence. The key assumption is that if 𝑿𝑤 is approximately low-

rank, then the temporal components of the factorized 𝑿𝑤 are good approximations of the tem-

poral components of each𝑿 𝑝 . In the following two sections we discuss: (i) how to estimate the

constant-pattern data 𝑿 𝑝 from the wide-field data 𝑿𝑤 ; and (ii) how to estimate the wide-field

video𝑿𝑤 from data acquired with patterned illumination.
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3.2.7 The relation between widefield and constant-pattern data.

We can always decompose the wide-field data𝑿𝑤 as a superposition of rank-1 video sequences by

SVD:

𝑿𝑤 = 𝑼 𝑤𝑽 𝑤𝑇 =∑𝑖 𝒖
𝑤
𝑖 ⊗ 𝒗𝑤𝑖 (3.2)

Here⊗ represents the outer product, and 𝑇 denotes transpose. For our simulated data 𝒖𝑤𝑖 is a

vector representation of a 64 × 64 image and 𝒗𝑤𝑖 is a 𝑇 × 1 time modulation vector, where 𝑇

is the number of frames. We assume the set {𝒖𝑤𝑖 } is orthonormal. We can consider the same

decomposition for each hypothetical movie 𝑿 𝑝 where all frames are illuminated with the same

single pattern 𝑝 :

𝑿 𝑝 = 𝑼 𝑝𝑽 𝑝𝑇 =∑𝑖 𝒖
𝑝
𝑖 ⊗ 𝒗 𝑝𝑖 .

Wepropose the followingmodel for the relationbetween the spatial and temporal components

of each decomposition. If there is only one term in Equation 3.2 then it must be the case that

the decomposition for each 𝑿 𝑝 has only one term: the effect of projecting a constant pattern

onto a sample can certainly reduce the rank, but not increase it. In this case, it is reasonable that

the temporal dynamics will be the same under either homogeneous or patterned illumination, i.e.

that 𝒗 𝑝1 = 𝒗𝑤1 , provided that a representative portion of the dynamic object is still illuminated.

Our key assumption is that this relation holds even when the video sequences have more than

one component, and thus 𝒗 𝑝𝑖 = 𝒗𝑤𝑖 for every component 𝑖 of themovie and illumination pattern
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𝑝 . Under this assumption,

𝑿 𝑝 = 𝑼 𝑝𝑽 𝑤𝑇 =∑𝑖 𝒖
𝑝
𝑖 ⊗ 𝒗𝑤𝑖 , (3.3)

and if 𝑽 𝑤 is known, estimating𝑿 𝑝 reduces to estimating𝑼 𝑝 .

3.2.8 Dynamic optical sectioning from widefield data and coded

illumination patterns

Let 𝒀 be a video sequence where 𝐿 coded illumination patterns have been used and repeated𝑅

times, and suppose firstwe also have access through anoracle to thewide-field data𝑿𝑤 . Since each

𝑝 -th coding pattern is repeated𝑅 times, we have observed exactly𝑅 frames of the sequence𝑿 𝑝 .

Therefore, the coded illumination data provides us with incomplete information about each𝑿 𝑝 .

In Figure 3.2, 𝒀 is represented as the structured illumination measured data,𝑿𝑤 is represented

as paired frame widefield, and𝑿 𝑝 is represented as estimated constant pattern data.

By our key assumption, if we have access to the wide-field sequence 𝑿𝑤 we also know the

dynamic components of each 𝑿 𝑝 . This leads us to an estimation problem. Let 𝑇𝑝 be the set of

sampled times at which the 𝑝 -th pattern has been projected; each one of such sets has exactly𝑅

elements. To simplify the notation, let𝒎𝑤
𝑡 be the 𝑡 -th row of the matrix 𝑽 𝑤 . This allows us to

write the consistency constraint

𝑡 ∈ 𝑇𝑝 ⇒ 𝒚𝑡 = 𝒙
𝑝
𝑡 = 𝑼 𝑝𝒎𝑤

𝑡 . (3.4)
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Figure 3.2: Estimation of optical section dynamics from compressed Hadamard measure-
ments. Green: Pairs of images acquired with complement illumination patterns are summed to
form a half-framerate widefield movie. Blue: Low rank temporal components are calculated using
singular value decomposition (SVD). Red: Missing frames in constant-pattern movies are interpo-
lated from measured patterns and temporal evolution of components. Cyan: Hadamard demodula-
tion of estimated patterned frames results in a dynamic optical section.
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We propose to estimate the matrix𝑼 𝑝 by solving

minimize ∑𝑡∈𝑇𝑝
‖𝒚𝑡 − 𝑼 𝑝𝒎𝑤

𝑡 ‖2𝐹 (3.5)

where ‖ ⋅ ‖2𝐹 denotes the Frobenius norm squared, i.e., the sum of the squared entries of its argu-

ment. In the above, we assume we are trying to find as many components as there are present in

the widefield data. In this case, as long as the number of repetitions of the patterns is larger than

the number of components we are solving for, the solution is unique. The first-order optimality

condition characterizes the optimal solution𝑼 𝑝 as the solution to

𝑼 𝑝∑𝑡∈𝑇𝑝
𝒎𝑤
𝑡 ⊗𝒎𝑤

𝑡 =∑𝑡∈𝑇𝑝
𝒚𝑡 ⊗𝒎𝑤

𝑡 , (3.6)

fromwhere it is clear the solution is unique as long as the second factor in the left-hand side is non-

singular; this is generically true if the number𝑅 of repetitions is at least the number of compo-

nents of the widefield sequence. If one can cleanly divide the movie into non-overlapping spatial

domains with independent dynamics, then each domain can be analyzed separately. In this case

𝑅must only exceed the rank of the domain with the largest number of components. We define

the estimate for𝑿 𝑝 as

𝑿 𝑝 = 𝑼 𝑝𝑽 𝑤𝑇 .
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This allows us to calculate a Hadamard optical section for time 𝑡 as

𝒙𝑆𝑡 =∑
𝐿
𝑝=1 𝛿𝒄

𝑝 ⊙ 𝒙𝑝𝑡

=∑𝐿
𝑝=1 𝛿𝒄

𝑝 ⊙ (𝑼 𝑝𝒎𝑤
𝑡 )

= ∑𝑖 (∑
𝐿
𝑝=1 𝛿𝒄

𝑝 ⊙ 𝒖𝑝𝑖 ) ⊗ 𝒗𝑤𝑖 .

Consequently, our estimate of theoptically sectionedmovie𝑿 𝑝 corresponds to the staticHada-

mard demodulation of the estimated spatial components, time-modulated by the temporal com-

ponents of the widefield data.

3.2.9 Estimating widefield data from coded illumination patterns

The construction of our estimated optical section relies on the computation of the right-singular

vectors of𝑿𝑤 . As we cannot both acquire a structured illumination sequence and a uniform illu-

mination sequence simultaneously, we designed illumination patterns to overcome this problem.

At the cost of reducing the dynamic reconstruction frame-rate by a factor of two, a complement-

interleaved sequence of patterns enabled estimation of the widefield sequence and the dynamic

Hadamard optical section, as follows.

Consider the video sequencewhere𝐿 coded illuminationpatterns have beenused and repeated

𝑅 times. We interleave the acquisition of each pattern with the acquisition of its complement,

i.e. the binary pattern obtained by inverting each entry. Adding both patterns yields a uniform
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illumination pattern, i.e.

𝒙𝑤𝑡 = 𝒚𝑡 + 𝒚 𝑡+𝛿 𝑡 (3.7)

where 𝒚𝑡 is the data image acquired at time 𝑡 and 𝒚 𝑡+𝛿 𝑡 is the data image acquired one camera

frame later, with the complementary illumination pattern.

We can now estimate the temporal components of the widefield sequence, which we denote

as 𝑽 𝑤 ; similarly, we let 𝒎𝑤
𝑡 be the estimate for 𝒎𝑤

𝑡 . The dynamic Hadamard optical section

becomes

𝒙𝑆𝑡 =∑𝑖 (∑
𝐿
𝑝=1 𝛿𝒄𝑝 ⊙ 𝒖𝑝𝑖 ) ⊗ 𝒗𝑤𝑖

where𝑼 𝑝 is now computed from Equation 3.6 by replacing𝒎𝑤
𝑡 by its estimate𝒎𝑤

𝑡 .

In our implementation we found small fluctuations in illumination that varied with the same

period as the sequence of illumination patterns, a consequence of an un-identified instrumenta-

tion artifact. To correct this artifact, the widefield estimated movies were digitally divided by an

estimate of the intensity variations.

3.2.10 Pseudocode

A pseudocode of the data analysis method is shown inAlgorithm 3.1. The computational com-

plexity not including the computation of the SVD is𝑂 (𝑁 × 𝑅 × 𝐿 × 𝑃 )where𝑁 is the num-

ber of SVD components, and 𝑃 the number of camera pixels. MATLAB source code that gener-

ates Figure 3.4b from raw data is available at

https://github.com/adamcohenlab/Compressed-Hadamard-Code
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Algorithm 3.1 Compressed Hadamard estimation
parameters:

𝑁 ▷ number of components for truncated SVD
inputs:

𝑴 ▷ tissue activity movie with𝑅 × 2 × 𝐿 patterned frames
𝑪 ▷ calibration movie with 2 × 𝐿 patterned frames

initialization:
map ← [1, 2, 3, ..., 2 × 𝐿, 1, 2, 3, ...] ▷ pattern order in𝑴

procedure CHI(𝑴,𝑪 )
𝑴𝑤 ←𝑴even +𝑴odd
𝑪 𝛿 ← 𝑪even − 𝑪odd
𝑼 ,𝑺 , 𝑽 ← SVD(𝑴𝑤 , 𝑁 ) ▷𝑼𝑺𝑽 𝑇 approximates𝑴𝑤 with rank𝑁
𝑴 𝑟 ←𝑴𝑤

for 𝑖 ← 1 to𝑁 do
𝒗 ← 𝑺𝑖 ,𝑖𝑽𝑖
for 𝑗 ← 1 to 2 × 𝐿 do

𝑼 𝑝
𝑗 ←∑𝑘∈map=𝑗 𝑴 𝑟

𝑘𝒗𝑘/∑𝑘∈map=𝑗 𝒗 2
𝑘 ▷ estimation

end for
𝑼 𝑤
𝑖 ←∑2×𝐿

𝑘=1 𝑼
𝑝
𝑘

𝑼 𝑝𝛿 ← 𝑼 𝑝
even − 𝑼 𝑝

odd

𝑼 𝐻
𝑖 ←∑𝐿

𝑘=1𝑼
𝑝𝛿
𝑘 ⊙𝑪 𝛿

𝑘 ▷Hadamard demodulation
𝑴 𝑟 ←𝑴 𝑟 − 𝑼 𝑝

map𝒗 𝑇 ▷ remove estimated component from residual
end for

end procedure
outputs:

𝑴𝑤 ← 𝑼 𝑤𝑺𝑽 𝑇 ▷widefield movie
𝑴𝐻 ← 𝑼 𝐻𝑺𝑽 𝑇 ▷ optical section movie
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3.2.11 Robustness

Accurate estimation of the spatial components relies on being able to: (i) estimate accurately the

widefield sequence; and (ii) compute the time-modulation factors according to the rank of the

sequence. Several factors may impact either step. For instance, the changes in sample intensity

might be too fast relative to the rate at which the interleaved complementary patterns are illumi-

nated, leading to an inaccurate estimate of the widefield sequence. Even if the widefield sequence

is estimated accurately, its rank could be too high relative to the number of repetitions, and there-

fore the number of time-modulation factors might be underestimated.

This section addresses the variability of the proposed estimate for𝑼 𝑝 with respect to these two

factors. Suppose the widefield sequence𝑿𝑤 has a rank𝑁𝑤 , which we do not assume to be small,

and consider a rank𝑁𝑤 estimate𝑿𝑤 of𝑿𝑤 with𝑁𝑤 ≤ 𝑁𝑤 . Furthermore, assume the number

of repetitions to be greater than the number of components to be estimated (𝑁𝑤 ≤ 𝑅). As

indicated before, this makes the estimate uniquely defined. In movies with e.g. a modest number

of neurons, this is often the case. If the sources are compact and one can divide the movie into

sub-regions each with a modest number of sources, one can then decrease the requirement on𝑅

in each sub-region.

In this setting 𝑼 𝑝 has 𝑁𝑤 columns and each𝒎𝑤
𝑡 has 𝑁𝑤 entries. We can decompose their

product as

𝑼 𝑝𝒎𝑤
𝑡 = [ 𝑼 𝑝

0 𝑼 𝑝
𝑅
] [

𝒎𝑤
0,𝑡

𝒎𝑤
𝑅,𝑡

] = 𝑼 𝑝
0 𝒎𝑤

0,𝑡 + 𝑼
𝑝
𝑅𝒎

𝑤
𝑅,𝑡 ,
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where𝑼 𝑝
0 has now𝑁𝑤 columns and𝒎𝑤

0,𝑡 has𝑁𝑤 entries. In this decomposition,𝑼 𝑝
0 represents

the 𝑁𝑤 components that we ought to estimate accurately, whereas 𝑼 𝑝
𝑅 represents the remain-

ing𝑁𝑤 − 𝑁𝑤 ≥ 0 components that we are neglecting. From Equation 3.6 we see that 𝑼 𝑝 is

determined by

𝑼 𝑝∑𝑡∈𝑇𝑝
𝒎𝑤
𝑡 ⊗𝒎𝑤

𝑡 =∑𝑡∈𝑇𝑝
𝒚𝑤𝑡 ⊗𝒎𝑤

𝑡

=∑𝑡∈𝑇𝑝
(𝑼 𝑝𝒎𝑤

𝑡 ) ⊗ 𝒎𝑤
𝑡

= 𝑼 𝑝
0 ∑𝑡∈𝑇𝑝

𝒎𝑤
0,𝑡 ⊗𝒎𝑤

𝑡 + 𝑼
𝑝
𝑅 ∑𝑡∈𝑇𝑝

𝒎𝑤
𝑅,𝑡 ⊗𝒎𝑤

𝑡 .

A straightforward algebraic manipulation shows that

(𝑼 𝑝 − 𝑼 𝑝
0 )∑𝑡∈𝑇𝑝

𝒎𝑤
𝑡 ⊗𝒎𝑤

𝑡 = 𝑼
𝑝
𝑅 ∑𝑡∈𝑇𝑝

𝒎𝑤
𝑅,𝑡 ⊗𝒎𝑤

𝑡

+ 𝑼 𝑝
0 ∑𝑡∈𝑇𝑝

(𝒎𝑤
0,𝑡 −𝒎𝑤

𝑡 ) ⊗ 𝒎𝑤
𝑡

Consequently, when the second factor in the left-hand side is well-conditioned, the error 𝑼 𝑝

incurs in estimating𝑼 𝑝
0 is essentially controlled by two dependent factors: (i) the decay in the sin-

gular values of thewidefield sequence𝑿𝑤 as quantified by the size of themodulation factors𝒎𝑤
𝑅,𝑡

for the components we are not estimating; and (ii) the accuracy in the estimate of the modulation

factors𝒎𝑤
0,𝑡 for the components we are estimating.

This analysis shows that our approach to estimating𝑿𝑤 should be evaluated according to these

criteria. The first criterion depends on the properties of the sample being imaged, namely the
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activity of the cells during the observation and the number of cells active in the field of view at

any given time. It thus depends on the specifics of the experimental setup. The second criterion

can be analyzed as follows. If we let 𝑼 𝑝
be the components corresponding to the inverted 𝑝 -th

pattern and the 𝑝 -th pattern is illuminated at time 𝑡 , the estimate in Equation 3.7 implies

𝒙𝑤𝑡 = (𝑼 𝑝 + 𝑼 𝑝)𝒎𝑤
𝑡 + 𝑼

𝑝(𝒎𝑤
𝑡+𝛿 𝑡 −𝒎𝑤

𝑡 )

≈ 𝒙𝑤𝑡 + 𝑼
𝑝(𝒎𝑤

𝑡+𝛿 𝑡 −𝒎𝑤
𝑡 )

where we consider that 𝑼 𝑝 + 𝑼 𝑝 ≈ 𝑼 𝑤 . Consequently, the error when estimating the com-

ponents of the widefield sequence will be mostly due to the rate of change of the temporal com-

ponents, which depends on the rate at which each cell in the sample activates. Dynamics faster

than the temporal resolution (half the camera frame rate) will not be accurately captured by the

proposed method. Large variations of fluorescence between the instants when the sample is il-

luminated by a given pattern and by its complement will give rise to artifacts. In the estimated

widefieldmovie, a spatial artifact corresponding to themomentary illumination pattern will arise.

This effect is formalized inAppendix C.

3.3 Results

3.3.1 Numerical experiments

We simulated movies of a dynamic 3-dimensional sample, approximately matched to brain tissue

expressing a nuclear-localized Ca2+ indicator. This process is illustrated in Figure 3.3a, left panel.
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Figure 3.3: Dynamic optical sectioning in simulated data. (a) Left: Simulations modeled a 3-
dimensional sample of neuronal activation under patterned illumination. Center: simulated datasets
used in calculation. The fluctuations in the ‘Structured’ traces represent the effect of modulated
illumination. Right: Optical section datasets computed by different methods. ‘Confocal’ is an ide-
alized instantaneously acquired confocal image. ‘Full demodulation’ is an idealized Hadamard sec-
tion in which images with all illumination patterns are known for each frame. ‘Compressed Ha-
damard’ represents a physically realizable approach in which one illumination pattern is used per
frame, and the missing data are inferred (CHI). (b) In a static sample, increasing the Hadamard
code length increased the size of the spatial tiles, and reduced systematic error due to tile-to-tile
crosstalk. (c) In a dynamic sample with a fixed number of frames (enforcing a tradeoff between
code length 𝐿 and number of repeats 𝑅), short codes introduced errors into Hadamard reconstruc-
tions due to tile-to-tile crosstalk. Long codes had less tile-to-tile crosstalk, but fewer repetitions,
𝑅, leading CHI to suffer relative to ‘full demodulation’. (d) For a fixed code length, the CHI error
relative to full demodulation was minimized when the number of SVD components used (e.g. in
Equation 3.2) was equal to the rank of the data. (e) CHI reconstructions encountered a shot noise
limited regime at low counts under Poisson noise (where error is inversely proportional to square
root of intensity), but at higher counts errors approached the level of systematic errors present in the
noiseless case. The shot noise limited error in CHI was ∼3-fold smaller than in confocal when signal
levels were matched. The two techniques were comparable when raw photon counts were matched.
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For each set of sample dynamics, we simulated several different imaging modalities. 1) spatially

uniform illumination and wide-field imaging onto a camera (𝑿𝑤 ); 2) patterned illumination and

widefield imaging (𝒀 ); 3) instantaneous confocal acquisition of the whole FOV; 4) a hypothetical

set of movies where each illumination pattern was acquired for all frames (𝑿 𝑝 ); and 5) a calibra-

tion pattern dataset (𝑪 ) that simulated projection on a thin constant fluorescent layer in the focal

plane. Figure 3.3a shows calculations of input datasets in the center panel, and resulting optical

sections in the right panel. These experiments investigate how the proposed method is affected

bymeasurement noise, and by parameter choices in the code length, the number of repetitions of

periodic codes, and the number of SVD components.

To first characterize the staticHadamard demodulationmethod, we simulated the ideal (noise-

less) acquisition of a static sample using different lengths of Hadamard code. Ideal Hadamard

demodulation results in a confocal-like optical section. However our simulation represented two

non-ideal aspects of practicalHadamardmicroscopy: 1) codeswere repeated to tile the FOV, intro-

ducing crosstalk between spatial repetitions of the same code; 2) the calibrationmethodmeasured

the illumination pattern convolved with the collection PSF, whereas one would ideally measure

the illumination pattern at the sample itself. Errors were calculated as the root mean squared

deviations for all pixels and all timepoints, normalized by the mean of the reference movie. As

anticipated, for a time-invariant sample, increasingHadamard code length led to improved corre-

spondence of Hadamard demodulation and simulated confocal (Figure 3.3b).

We then tested the dynamic estimation method with simulated movies of time-varying sam-

ples. For a desired length of experiment, camera framerate, and total number of pictures, one
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could choose more repetitions of a short code, or fewer repetitions of a long code. To character-

ize this tradeoff, we simulated an ideal (noiseless) movie for a range of Hadamard code lengths

(8, 12, 20, 24, 32, 40, 48, and 60), using periodic repetitions of the complement-interleaved pat-

tern sequence (60, 40, 24, 20, 15, 12, 10, and 8 repetitions respectively) for a total of 960 frames

in all cases. Estimated CHI optically sectioned movies (𝑿𝑆 ) were compared to confocal images

(accounting for the confocal point-spread function, but assuming instantaneous image acquisi-

tion across the whole field of view) and to ‘full demodulation’ Hadamard optical section movies

(𝑿𝑆 , calculated by demodulating the full set 𝑿 𝑝 for each 𝑡 , i.e. assuming that images with all

Hadamard illumination patterns were available at each time-point).

Figure 3.3c shows the discrepancy between CHI vs. the confocal simulations (blue circles),

indicating an intermediate value of code length as optimal. The comparison of CHI with ‘full

demodulation’ Hadamard showed the reconstruction error due to the dynamic estimation pro-

cess, while avoiding confusion with systematic errors (relative to confocal) that were present in

both Hadamard demodulation processes, i.e. from tile-to-tile optical crosstalk. Figure 3.3c (red

squares) shows that the dynamic estimation error increased with code length, as the number of

code repetitions decreased. We ascribe this effect to rank under-representation at longer code

lengths. The dynamic estimation error was less than 2% for code length 24, the longest code

length for which the simulated sample rank (15) was over-represented by the number of code rep-

etitions (20).

CHI uses the singular value decomposition (SVD) to represent movie dynamics. To charac-

terize the effect of the number of SVD components, we applied CHI with code length 24 (corre-
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sponding to𝑅 = 20 replicates) to a simulated movie with 15 components. We calculated recon-

struction error as a function of number of SVD components. The error, shown in Figure 3.3d,

wasminimizedwhen using the same number of components as in the data, but did not suffer very

much from using more than the ideal number of SVD components.

To test the effect of shot noise onCHI reconstructions, we simulated cameramovieswithmean

counts per pixel ranging from ∼1 to 5 × 104 and imposed Poisson-distributed noise. We used

CHI to estimate optically sectioned movies, and compared with noiseless confocal and noiseless

‘full demodulation’ Hadamard movies (Figure 3.3e). Two noise regimes were apparent. At low

counts, shot noise dominated and error was inversely proportional to the square root of the signal

amplitude. At high counts, the noise asymptotically approached the level of the noiseless case. No

instabilities or numerical artifacts were observed in estimates from noisy datasets.

To benchmark the photon economy of CHI reconstructions, we compared CHI and confocal

when both were subject to Poisson-distributed shot noise. The two sets of images were scaled

to have the same mean counts, and the error in each was calculated relative to a noiseless confo-

cal dataset. As expected, the confocal shot noise error was inversely proportional to the square

root of mean counts. At low intensity, the confocal error was larger than the CHI error by a fac-

tor of 3.28. This discrepancy reflects the 11.36-fold greater mean counts in the raw CHI frames

(√11.36 = 3.37), i.e. the two techniques have comparable shot noise properties when raw pho-

ton counts are matched. We attribute the favorable noise properties of CHI to the denoising

properties of the SVD truncation step, which has been characterized previously 161,162. In gen-

eral, the noise properties of CHI will depend on the amount of background autofluorescence
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(the image reconstruction process removes this background on average, but not its shot noise),

whereas the noise properties of confocal are insensitive to the background because background is

rejected physically before photon detection. Practical implementations of camera-based spinning

disk and point-scanning confocal systems can produce optical sections with minimal noise from

background fluorescence. Spinning disk confocal can readily image at a 1 kHz camera frame-rate,

while point-scanning is typically slower due to limitations on galvomirror acceleration. However

neither spinning disk nor point-scanning confocal techniques readily extend to high NA large

FOV optics, as further elaborated in Section 3.4.

3.3.2 Compressed Hadamard Imaging in live tissue

All-optical electrophysioloॽ in acute brain slice. We tested Compressed Hadamard Imaging in

acutemouse brain slice. A sparse subset of neurons co-expressed a blue-excited optogenetic actua-

tor and a red-excited genetically encoded voltage indicator. Targetedblue light stimulation evoked

actionpotentials (APs), which registered via the fluorescence of the voltage indicator (Figure 3.4a,

left). Similar preparations have previously been used for high-throughoupt all-optical mapping

of neuronal excitability in intact brain tissue 163. Data acquisition at 1 kHz framerate allowed ac-

tivity reconstructions at 500 Hz. This experiment used a Hadamard code length of 20 patterns

in complement-interleaved sequence, repeated 240 times over 9.6 s.

We tested the ability of CHI to register the short fluorescence transients associated with APs.

The blue stimulation pattern consisted of 500 ms on every 1 s, increasing in intensity from 10

to 40 mW/cm2. To reconstruct images, each acquisition was analyzed with the same algorithm,
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Figure 3.4: (Compressed Hadamard Imaging of high-speed neuronal voltage dynamics in
brain tissue. CHI optical sections were computed at a 500 Hz reconstructed frame rate in acute
mouse brain slices expressing an Optopatch construct. (a) Example single-neuron recordings show-
ing optically evoked and optically recorded action potentials. The CHI cell images showed increased
membrane contrast and background suppression relative to wide-field images. The first 2 traces
come from the cell and ROI in the image. The last 2 come from another cell. (b) Two partially
overlapping neurons (S1 and S2) were recorded in the same FOV, and the measurement repeated
at multiple depths. Scale bar 10 𝜇m. Two ROIs (R1 and R2) reported mixed signals from both neu-
rons in the wide-field images. The same ROIs reported single-cell spike patterns in the CHI images.
(c) Quantification of action potential SNR as a function of focal plane depth. Left, top: in wide-
field recordings, both cells contributed to the spikes in both ROIs at all focal depts. In CHI, the
signal from each cell was localized around the corresponding focal plane. Error bars represent s.e.m.
Right: Hadamard removed spurious signals from out-of-focus cells, increasing the signal contrast.
Maximum SNR was reduced by a factor of ∼5 in CHI sections compared to the widefield reference.
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selecting 5 components for the SVD. This procedure yielded estimates of the widefield epifluo-

rescence movie and Hadamard optical section. Figure 3.4a (center panel) shows time-averaged

images of an example movie reconstructed in Widefield (top) and CHI (bottom), showing an in-

creased membrane contrast and background rejection in the CHI optical section; the right panel

shows time traces integrated from a cell mask ROI in multiple CHI movies. Slow transients un-

correlated with optogenetic stimulation were attributed to sub-threshold potential fluctuations.

To test the ability to reject out-of-focus signals, we studied two nearby, partially overlapping

neurons, located at 50 and 60 𝜇m below the tissue surface. We repeated the stimulation and

imaging protocol while translating the objective 𝑧 position to focus at different depths (𝑧 = 40,

50, 60 and 70 𝜇m below the tissue surface, left panel of Figure 3.4b). Widefield and Hadamard

movies were reconstructed at 500Hz from each recording. Figure 3.4b shows in the center panel

time averaged images at the depths focused on each neuron soma. CHI images showed reduced

background fluorescence and higher cell membrane contrast, compared to the widefield images.

Two ROIs were manually defined to cover part of each neuron and to avoid their region of

overlap. ROI-integrated time traces clearly showed APs in each recording. In widefield movies,

the APs were mixed in each ROI, with distinct amplitudes from the two cells (Figure 3.4b, right

panel insets, asterisks and apostrophes). The SNR was defined as the ratio of mean AP spike

height to baseline standard deviation during a spike-free interval. In CHImovies, the signal from

each cell was localized to the corresponding focal plane, and there was little crosstalk between

ROIs (Figure 3.4c, left). These metrics indicate that CHI provided fast optical sectioning and

reduced crosstalk relative to widefield Imaging.

123



However, the CHI signals had reduced SNR relative to widefield by a factor of 4 for neuron

1, and by a factor of 7 for neuron 2 (Figure 3.4c, left), reflecting the fact that CHI optical sec-

tions sampled data from only a single focal plane in the cell, whereas widefield images included

fluorescence from the whole cell.

Brain-wide neuronal recording in live zebrafish. We implemented CHI in a larger FOV for-

mat to make neuronal recoding across a zebrafish brain densely expressing the Ca2+ indicator

GCaMP6 (Figure 3.5a). The animal was paralyzed with 𝛼-bungarotoxin to avoid motion arti-

facts, and the drug PTZ was administered to induce brain-wide epileptiform activity. No opto-

genetic stimulation was used. We recorded at a framerate of 100 Hz, with a 410 𝜇m FOV. These

parameters yielded brain-wide recordings with CHI reconstructions at 50 Hz, sufficient to cap-

ture Ca2+ dynamics. Movie data were analyzed block-wise (40 𝜇m side square blocks, 13 𝜇m

sliding step, with posterior weighted average reconstruction) under the assumption of locally low

rank dynamics (SVD with 50 components per block). This experiment used a Hadamard code

length of 36 patterns in complement-interleaved sequence, repeated 30 times over 21.6 s.

Fromone acquisition, widefield andHadamardmovieswere estimatedwithCHI.Figure 3.5b

shows the dramatic difference in contrast betweenwidefield andCHI in the time-averaged images.

To favor an unbiasedROI-based analysis, 15 cell-sizedROIs were automatically selected byGram-

Schmidt orthogonalization of the widefield movie, iteratively selecting ROIs of largest variance

over time in the residual movie after projecting out the signals from previous ROIs. This process

selected ROIs with the most different and significative signals in the widefield movie. ROIs in

widefield data revealed a diversity of transients, with a large common mode decay beginning at
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Figure 3.5: CHI high speed optical sectioning of large FOV, high dynamic rank data. (a) Ex-
perimental setup for in vivo zebrafish imaging. (b) Brain-wide FOV containing hundreds of neurons
reconstructed at 50 Hz time resolution. Top: Widefield; bottom: CHI. Images show the time average
ofmovies. Scale bar 100𝜇m. Traces correspond to ROIs sorted from top to bottom. (c)CHI recordings
showed increased contrast relative to widefield in the cell-to-cell cross correlation matrix, reflecting
rejection of out-of-focus common mode signals. Top: Cross-correlation matrices for widefield (left)
and CHI (right) signals. Bottom: Distribution of the off-diagonal correlation coefficients showing the
spuriously high widefield cross-correlations due to out-of-focus signals. (d) Small ROI correspond-
ing to one reconstructed block (from blue frame in b), showing selected Widefield and Hadamard
movie frames and ROIs. Triangles indicate timepoints of selected movie frames. Scale bar 20 𝜇m.
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𝑡 = 0, attributed to visually-evoked neural activity (Figure 3.5b, right panel). The CHI movie

showed large initial transients in only a subset ofROIs. Toquantify howdifferentwere the neural

signals among each set, we calculated their normalized cross-correlations, shown in Figure 3.5c.

Figure 3.5d shows the detail of one reconstruction block, with selected ROIs and corresponding

time traces, illustrating the suppression of out-of-focus fluorescence and mixed signal transients.

This experiment demonstrated the implementation of high spatiotemporal bandwidth computa-

tional optical sectioning, allowing wide-brain neural recording of Ca2+ transients.

3.4 Discussion

Compressed Hadamard Imaging (CHI) microscopy is a novel form of computational optical sec-

tioning using structured illumination and ideas from compressed sensing to achieve simultane-

ously high spatial and temporal resolution. We performed detailed numerical simulations to char-

acterize the properties of the technique. The CHI technique relies on the low-rank statistical

structure of neural recordings: while the number of pixels in each image is large, the number of

independently varying fluorescence components is much smaller. The spatial and corresponding

temporal components of the signals are estimated separately, and then combined to yield a high

spatio-temporal resolution reconstructed movie.

We demonstrated these advances by recording wide-area optically sectioned movies in live tis-

sue, including voltage imaging of neurons in acute mouse brain slice with 500 Hz time resolu-

tion, and brain-wide Ca2+ imaging in live zebrafish with 50Hz time resolution. These recordings
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represent a ∼100-fold increase in time resolution compared to the previous report of Hadamard

microscopy to generate anti-epileptic drug inhibition maps in Chapter 2 (without compressed

sensing dynamic reconstruction) in which Ca2+ dynamics were recorded at 5.6 Hz. CHI can be

readily adapted to measure other fast physiological signals with fluorescence microscopy, such

as pH, glutamate, acetylcholine, and membrane tension, enabling wide-area high speed optically

sectioned recordings while avoiding off-focal contaminating signals.

How does CHI compare to other optical sectioning microscopy techniques? CHI allows

optical sectioning at half the maximum pixel rate of the camera, far surpassing point-scanning

methods in temporal resolution. The time resolution of CHI is equivalent to that of HiLo mi-

croscopy52,164, but in Chapter 2 we showed that Hadamard image reconstruction offers better

background rejection than HiLo and avoids systematic speckle noise that occurs in HiLo due

to the use of a single pseudo-random illumination mask in that technique 138. Both CHI and

HiLo microscopy are susceptible to shot noise from out-of-focus background. The extent to

which this noise degrades the signal depends on the sample structure. CHI is anticipated to have

lower shot noise than HiLo in the computed images due to the filtering effect of the low-rank

representation of the data; though we note that similar post-processing could be applied toHiLo

data. Commercially available spinning disk confocal systems offer high-speed imaging and phys-

ical optical sectioning, but are incompatible with large-area, high numerical aperture objectives.

The micromirror-based optical patterning system of CHI is compatible with any objective. The

micromirror system also facilitates combination of the technique with patterned illumination for

optogenetic stimulation or photochemistry. To retrofit a fluorescence microscope with a CHI
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system is approximately 1/5th of the cost of a spinning disk system and 1/10th of the cost of a

two-photon imaging system.

We note that the dynamic estimation algorithm could be adapted to work with any structured

illumination technique, including stripe SIM51,156 orHiLo 139. For instance, thePSFof stripe SIM

could be improved by successive illumination with stripes of different orientation and spatial fre-

quency. With conventional image reconstruction algorithms this approach would decrease time

resolution; but with compressed sensing image reconstruction, the full time resolution would be

maintained. Hadamard encoding achieves the shortest possible packing of orthogonal codes in bi-

nary matrices, and is optimal to minimize the code length while having a flexible choice of spatial

code separation.

For practical CHI implementations, acquisition parameters have to be chosen to match exper-

imental needs. The biological process and sample of interest will determine the necessary spatial

and temporal resolution. Here follows a step-by-step guide to choose these parameters:

1. Imaging resolution, including optical system and camera spatial resolution, should be de-
termined by the size of static sample features that need to be resolved.

2. DMD projection elements should be resolvable by the imaging system, but smaller than
the dynamic objects to be measured.

3. Camera framerate should be twice the maximum temporal resolution of interest.

4. Recording length should be maximized within the limits set by sample stability and tech-
nical limitations such as data storage.

5. Finally, the code length 𝐿 should be maximized, but constrained such that code repeti-
tions𝑅 surpass the rank of dynamic data in the sample FOV to be analyzed. For example,
if 1000 frames are to be recorded, and the rank is expected to be 10, the code length should
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not exceed 50 (100 frames are required to cycle through the code and its interleaved com-
plement).

The reconstruction algorithm for optical section movies has only one adjustable parameter:

the number of SVD components should be set to exceed the rank of the underlying sample, and

it does not need to be higher than the number of code repetitions. An upper bound to the rank of

the sample can be estimated by calculating how many neurons would contribute distinguishable

activity to a widefield movie.

Compressed Sensing theory has been used in other microscopy applications 165,166,157–159,167.

These other techniques require explicit regularization to constrain solutions with sparsity proper-

ties, together with computationally intensive, parameter-dependent calculations to minimize an

objective function. In this work, measurements are compressed but the requirement for low-rank

sample representation is implicit, with optical section estimations that result from an analytic and

sample-independent direct calculation. There are no adjustable parameters to enforce spatial or

temporal sparsity, iterative optimization, or convergence criteria.

Conclusion

This work presents an extension to existing computational optical sectioning methods, to record

neuronal activity at high temporal resolution by leveraging the natural redundant structure of

these biological signals. Future work could extend the algorithm to accommodate moving or

shape-changing samples, that is, samples with low dynamic rank under a more complex signal

generation model.
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4
Conclusion

Even though all-optical neurophysiology (AON) techniques have been highly optimized

for behavioral studies in live animals, their application to ex vivo brain tissue has lagged.

Acute brain slices offer optical, electrical, and chemical access to any brain region, exposing∼ 105

neurons of interest near the tissue surface to be potentially interrogated.

Using advances described in this dissertation, unbiased AON mapping can now be applied to

new area-based studies, e.g. to functionally identify rare cell populations, to characterize subtle

regional variations in functional properties, and to probemanyneurons or regions in parallel with

matched conditions.



Context of cross-disciplinary methods

In this work, a cross-disciplinary approach has brought technical innovations from established

fields and applied them to neuronal activity recordings.

The main connection is the inspiration from digital telecommunications to implement coded

patterns for structured illumination optical sectioning (SIM). The original linear SIMmethod48

used sinusoidal illumination patterns, which contain a pure spatial frequency. The resolution

gain obtained with linear SIM was attributed to the modulation of image features into a high

spatial frequency band. But in scattering tissue, this method could be prone to errors caused by

phase distortions of the illumination patterns, when phase distortions are localized to the spatial

frequency of the patterns. The origin of this problem is similar to in radio-frequency digital com-

munication, where scattering of radio waves by physical objects cause interference. Code division

multiple access (CDMA) and orthogonal frequency-division multiplexing (OFDM) are codifi-

cation methods that transmit multiple streams of data through a scattering channel, also using

Walsh-Hadamard codes to impart orthogonal codification to each data stream 169. This codifi-

cation distributes the information content over a spread spectrum, making the codes robust to

scattering containing localized phase distortions. This strategy inspired the application of the

same orthogonal codes to microscopy inChapter 2, to distinguish neighboring sample locations

by their uncorrelated illumination. The resulting Hadamard-coded illumination patterns have a

uniform power spectral density in space and in time.

Similarly, the matched filtering demodulationmethod used for reconstructing optical sections
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introduced in Chapter 2 is a robust method for detecting signals of known shape in noisy mea-

surements. Thismethod is appliedwidespread, fromdecodingCDMAandOFDMsignals in our

cellphones, to detection of gravitational waves 170.

Finally, compressed sensing ideas applied in Chapter 3 were inspired in its successful applica-

tion to acceleration in other fields, including MRI data acquisition 171 and black hole imaging 172.

In neuronal activity recordings, the information of interest can be represented concisely (in a fac-

torized representation of cell intensity over space and fluctuations over time), and the measure-

ments are distributed over the concise representation (on average, each patterned illumination

frame captures informationuniformly from all cells). In thiswork the sparse quality of the sample

is implicit in a direct reconstruction of data, thus themethod avoids numerical optimizationwith

explicit sparsity and consistency that are standard in prior compressed sensing applications 173.

Future applications

This work enables wide-area all-optical studies of genetic mechanisms underlying neurological

disorders such as epilepsy. Dysfunction in subtype-specific excitability 174, or in synaptic transmis-

sion of specific neuronal subpopulations 175 are suspected causes for epileptogenesis. Wide-area

AONmapping of excitability perturbations and functional connectivity by tool pharmacology is

a high-throughput method with the potential to transform current mapping efforts, which com-

monly use a single point patch-clamp measurement in combination with Ca2+ reporters and/or

voltage-sensitive dyes.
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One promising application is the use of compressed Hadamard imaging for 1P voltage record-

ings in live animals. Many existing in vivo fluorescence neural imaging techniques rely on unmix-

ingmethods to separate signals from neighboring neurons that mix into commonmeasurements.

However, to study single-cell correlations in subthreshold membrane voltage fluctuations83, op-

tical sectioning based on a physical basis of geometrical source of detected light may provide an

advantage compared with unmixing methods, which have to rely on signal decorrelation in or-

der to separate units. Thus it is likely that compressed Hadamard optical sectioning allows for a

denser expression of voltage reporter for 1P excitation measurements, compared to the single cell

performance limit that may be expected with or without unmixing.

Remaining optical sectioning challenges

In wide-area AON, limited availability of fluorescent signals imposes a tradeoff between spatio-

temporal resolution and number of cells that can be recorded. Protocols in this work record from

a single focal plane, treating many other cells in the volume as unwanted background. However,

there is no fundamental reason why microscopes shouldn’t have a focal volume instead of a fo-

cal plane. Wide-area Hadamard AON could be extended to three-dimensions. By adding depth

modulation to the illumination and/or detection paths, the cells’ depth could be measured in

addition to their functional responses to optogenetic stimulation, thereby converting unwanted

off-focal signals into useful volumetric neurophysiology data. These advances would accelerate

the application of wide-area all-optical neurophysiology to other neurobiology problems.
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A
Continuous domain

image formation model

This Appendix extends Section 2.2.4.6 by presenting an analysis of static Hadamard mi-

croscopy using a linear optical system model analysis of image formation and image re-

construction. The result shows that this process produces a confocal optical section. This analysis

is equivalent to the one presented in Section 2.2.4.6, but in continuous notation andwith amore

detailed presentation of steps.



Throughout this Appendix, we use 𝑔(𝑥, 𝑧) to represent the three-dimensional fluorescence

distribution in the sample for location𝑥 anddepth𝑧, where𝑥 represents a two-component vector

of position in the plane. We use 𝑝(𝑥, 𝑡 ) ∈ {−1, 1} to represent an idealized binary illumination

pattern for location𝑥 at time 𝑡 . Scattering anddefocus of light are representedby thepoint-spread

functions (PSF) 𝘴1(𝑥, 𝑧) and 𝘴2(𝑥, 𝑧), corresponding to illumination and collection respectively

(i.e. 𝘴1 is the three-dimensional distribution of light intensity at the sample caused by a point

source illumination pattern, and 𝘴2 is the three-dimensional distribution of sensitivity from the

sample in a point detector at the camera plane).

Wedefine in extenso the two-dimensional convolution in theplanebetween functions𝑓 (𝑥0, 𝑥1)

and ℎ(𝑥0, 𝑥1) as

𝑓 (𝑥0, 𝑥1) ∗ ℎ(𝑥0, 𝑥1) = ∫∫𝑓 (𝑥0 − 𝑢0, 𝑥1 − 𝑢1)ℎ(𝑢0, 𝑢1)𝑑𝑢0𝑑𝑢1

although we will use the simplified notation where 𝑥 is the two-component position vector from

hereon:

𝑓 (𝑥) ∗ ℎ(𝑥) = ∫𝑓 (𝑥 − 𝑢)ℎ(𝑢)𝑑𝑢
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We begin by modeling the patterned illumination at the sample as the convolution of the de-

signed patterns with the illumination PSF

𝑝(𝑥, 𝑡 ) ∗ 𝘴1(𝑥, 𝑧) = ∫𝑝(𝑥 − 𝑢, 𝑡)𝘴1(𝑢, 𝑧)𝑑𝑢

The emission is given by the product of the fluorescence distribution and the illumination at

the sample, 𝑔(𝑥, 𝑧) (𝑝(𝑥, 𝑡 ) ∗ 𝘴1(𝑥, 𝑧)), and themeasurement𝑚(𝑥, 𝑡 ) at the camera is obtained

convolving the emission with the collection PSF, then integrating across depths at the detector

plane.

𝑚(𝑥, 𝑡 ) = ∫[𝑔(𝑥, 𝑧) (𝑝(𝑥, 𝑡 ) ∗ 𝘴1(𝑥, 𝑧))] ∗ 𝘴2(𝑥, 𝑧)𝑑𝑧

developing the inner terms of the expression, we rewrite

𝑝(𝑥, 𝑡 ) ∗ 𝘴1(𝑥, 𝑧) = ∫𝑝(𝑥 − 𝑢, 𝑡)𝘴1(𝑢, 𝑧)𝑑𝑢

and

[𝑔(𝑥, 𝑧) (𝑝(𝑥, 𝑡 ) ∗ 𝘴1(𝑥, 𝑧))] ∗ 𝘴2(𝑥, 𝑧) =

∫𝑔(𝑥 − 𝑣, 𝑧)∫𝑝(𝑥 − 𝑣 − 𝑢, 𝑡)𝘴1(𝑢, 𝑧)𝑑𝑢 𝘴2(𝑣 , 𝑧)𝑑𝑣
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leading to

𝑚(𝑥, 𝑡 ) = ∫∫𝑔(𝑥 − 𝑣, 𝑧)∫𝑝(𝑥 − 𝑣 − 𝑢, 𝑡)𝘴1(𝑢, 𝑧)𝑑𝑢 𝘴2(𝑣 , 𝑧)𝑑𝑣 𝑑𝑧

Hadamard reconstructions 𝑟 (𝑥) are obtained bymultiplyingmeasured datawith the reference

illumination patterns and then aggregating over all patterns, as shown in Section 2.2.4.4

𝑟 (𝑥) = ∫𝑚(𝑥, 𝑡 )𝑝(𝑥, 𝑡 )𝑑𝑡

𝑟 (𝑥) = ∫∫[𝑔(𝑥, 𝑧) (𝑝(𝑥, 𝑡 ) ∗ 𝘴1(𝑥, 𝑧))] ∗ 𝘴2(𝑥, 𝑧)𝑑𝑧 𝑝(𝑥, 𝑡 )𝑑𝑡

𝑟 (𝑥) = ∫∫∫𝑔(𝑥 − 𝑣, 𝑧)∫𝑝(𝑥 − 𝑣 − 𝑢, 𝑡)𝘴1(𝑢, 𝑧)𝑑𝑢 𝘴2(𝑣 , 𝑧)𝑑𝑣 𝑑𝑧 𝑝(𝑥, 𝑡 )𝑑𝑡

𝑟 (𝑥) = ∫∫𝑔(𝑥 − 𝑣, 𝑧)∫∫𝑝(𝑥 − 𝑣 − 𝑢, 𝑡)𝑝(𝑥, 𝑡 )𝑑𝑡 𝘴1(𝑢, 𝑧)𝑑𝑢 𝘴2(𝑣 , 𝑧)𝑑𝑣 𝑑𝑧

The choice of illumination patterns forming an orthogonal basis allows

∫𝑝(𝑥 − (𝑣 + 𝑢), 𝑡 )𝑝(𝑥, 𝑡 )𝑑𝑡 = 𝛿(𝑢 + 𝑣)

which yields

𝑟 (𝑥) = ∫∫𝑔(𝑥 − 𝑣, 𝑧)∫𝛿(𝑢 + 𝑣)𝘴1(𝑢, 𝑧)𝑑𝑢 𝘴2(𝑣 , 𝑧)𝑑𝑣 𝑑𝑧
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Recall that by the sifting property of convolution,

∫𝛿(𝑢 + 𝑣)𝘴1(𝑢, 𝑧)𝑑𝑢 = 𝘴1(−𝑣 , 𝑧)

and then

𝑟 (𝑥) = ∫∫𝑔(𝑥 − 𝑣, 𝑧)𝘴1(−𝑣 , 𝑧)𝘴2(𝑣 , 𝑧)𝑑𝑣 𝑑𝑧

We identify this integral as a convolution,

∫𝑔(𝑥 − 𝑣, 𝑧)𝘴1(−𝑣 , 𝑧)𝘴2(𝑣 , 𝑧)𝑑𝑣 = 𝑔(𝑥, 𝑧) ∗ (𝘴1(−𝑥, 𝑧)𝘴2(𝑥, 𝑧))

and defining a confocal PSF as the product of the illumination and collection PSFs, 𝘴(𝑥, 𝑧) ≡

𝘴1(−𝑥, 𝑧)𝘴2(𝑥, 𝑧), we can conclude:

𝑟 (𝑥) = ∫𝑚(𝑥, 𝑡 )𝑝(𝑥, 𝑡 )𝑑𝑡 = ∫𝑔(𝑥, 𝑧) ∗ 𝘴(𝑥, 𝑧)𝑑𝑧

That is, the static Hadamard optical section reconstruction 𝑟 (𝑥), calculated as the time-

correlation with the designed patterns, is an image of the focal plane, given by the convolution of

the fluorescent distribution and a PSF composed of the product of illumination and collection

PSFs.
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B
The relation between

confocal and Hadamard data

This Appendix extends Section 3.2.1.2 by exploring the optical sectioning property of

Hadamard demodulation, as applied to static samples, and considering a practical cali-

brationmethod for illumination patterns. The system ismodeled as a continuous intensity-linear

space-invariant optical system with patterned illumination. The illumination is further assumed

to consist of spatially-uncorrelated illumination functions of time. Demodulation usingmatched



filtering results in a confocal optical section.

The model for image formation is

𝑢(𝒑, 𝑡 ) = ∫
𝑧≥0

𝑝𝐶 (𝒑 − 𝒒, 𝑧)𝑓 (𝒒, 𝑧)𝜇(𝒒, 𝑧, 𝑡 ) 𝑑𝒒𝑑𝑧

where 𝑝𝐶 is the collection PSF, 𝑓 is the sample fluorescence and 𝜇 is the illumination onto the

sample. Here we have assumed the camera is imaged to the 𝑥𝑦 -plane at the 𝑧 = 0 coordinate, and

that the sample is on the positive 𝑧-axis. The illumination process is modeled as

𝜇(𝒒, 𝑧, 𝑡 ) = ∫𝑝𝐼 (𝒒 − 𝒓 , 𝑧)𝜋(𝒓 , 𝑡 ) 𝑑𝒓 ,

where𝑝𝐼 is the illuminationPSF, and𝜋 is the illuminationpattern. Using thismodel, thepractical

calibration data can be ideally represented as

𝑐(𝒑, 𝑡 ) = ∫𝑝𝐶 (𝒑 − 𝒒, 𝑧0)𝜇(𝒒, 𝑧0, 𝑡 ) 𝑑𝒒,

i.e., the calibration screen corresponds to a uniform 𝑓 fully concentrated on the plane 𝑧 = 𝑧0.

The location 𝑧0 represents deviation between the calibration plane and the focal plane, normally

set to 𝑧0 = 0. The positive-only illumination pattern is compensated by

𝑐𝛿 (𝒑, 𝑡 ) = 𝑐(𝒑, 𝑡 ) −∫
𝑡≥0

𝑐(𝒑, 𝑡 ) 𝑑𝑡 ,
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and matched filtering demodulation using the calibration data becomes

∫
𝑡≥0

𝑐𝛿 (𝒑, 𝑡 )𝑢(𝒑, 𝑡 ) 𝑑𝑡 =

∫
𝑧≥0

𝑝𝐶 (𝒑 − 𝒒 ′, 𝑧0)𝑝𝐶 (𝒑 − 𝒒, 𝑧)𝑓 (𝒒, 𝑧) (∫
𝑡≥0

𝜇(𝒒 ′, 𝑧0, 𝑡 )𝜇(𝒒, 𝑧, 𝑡 ) 𝑑𝑡) 𝑑𝒒𝑑𝒒 ′𝑑𝑧

whence

∫
𝑡≥0

𝜇(𝒒 ′, 𝑧0, 𝑡 )𝜇(𝒒, 𝑧, 𝑡 ) 𝑑𝑡 =

∫
𝑧≥0

𝑝𝐼 (𝒒 ′ − 𝒓 ′, 𝑧0)𝑝𝐼 (𝒒 − 𝒓 , 𝑧) (∫
𝑡≥0

𝜋(𝒓 ′, 𝑡 )𝜋(𝒓 , 𝑡 ) 𝑑𝑡) 𝑑𝒓 ′𝑑𝒓 .

We assume a full orthonormal set of illumination patterns such that

∫
𝑡≥0

𝜋(𝒓 ′, 𝑡 )𝜋(𝒓 , 𝑡 ) 𝑑𝑡 = 𝛿(𝒓 − 𝒓 ′)

and it follows that

∫
𝑡≥0

𝜇(𝒒 ′, 𝑧0, 𝑡 )𝜇(𝒒, 𝑧, 𝑡 ) 𝑑𝑡 = ∫𝑝𝐼 (𝒒 ′ − 𝒓 ′, 𝑧0)𝑝𝐼 (𝒒 − 𝒓 ′, 𝑧)𝑑𝒓 ′

= ∫𝑝𝐼 (𝒓 ′, 𝑧0)𝑝𝐼 (𝒒 − 𝒒 ′ − 𝒓 ′, 𝑧)𝑑𝒓 ′

where we used the change of variables 𝒓 ′ → 𝒓 ′ + 𝒒 ′ to obtain the last equality. Since the change
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of variables 𝒒 ′ → 𝒒 ′ + 𝒒 yields

∫𝑝𝐶 (𝒑 − 𝒒 ′, 𝑧0)𝑝𝐶 (𝒑 − 𝒒, 𝑧)𝑝𝐼 (𝒓 ′, 𝑧0)𝑝𝐼 (𝒒 − 𝒒 ′ − 𝒓 ′, 𝑧) 𝑑𝒒 ′𝑑𝒓 ′ =

∫𝑝𝐶 (𝒑 − 𝒒 − 𝒒 ′, 𝑧0)𝑝𝐶 (𝒑 − 𝒒, 𝑧)𝑝𝐼 (𝒓 ′, 𝑧0)𝑝𝐼 (𝒒 ′ − 𝒓 ′, 𝑧) 𝑑𝒒 ′𝑑𝒓 ′

we conclude

∫
𝑡≥0

𝑐𝛿 (𝒑, 𝑡 )𝑢(𝒑, 𝑡 ) 𝑑𝑡 = ∫
𝑧≥0

𝑝𝐻 (𝒑 − 𝒒, 𝑧)𝑓 (𝒒, 𝑧)𝑑𝒒𝑑𝑧

with

𝑝𝐻 (𝒑, 𝑧) = 𝑝𝐶 (𝒑, 𝑧)∫𝑝𝐶 (𝒑 − 𝒒 ′, 𝑧0) (∫𝑝𝐼 (𝒓 ′, 𝑧0)𝑝𝐼 (𝒒 ′ − 𝒓 ′, 𝑧) 𝑑𝒓 ′) 𝑑𝒒 ′.

The optical section PSF given by 𝑝𝐻 is the product of the collection PSF and the illumination

PSF, modified by the in-plane imaging quality of the calibration pattern used for demodulation.
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C
Estimating widefield sequences from

complementary illumination patterns

This Appendix extends Section 3.2.11 by considering the effect of fast fluorescence dy-

namics, e.g. when there is a transient increase in intensity that persists during one illumi-

nation pattern but not its complement. The estimated widefield movie then includes an artifact

comprising the change in intensity, multiplied by the illumination pattern used at that time.

Appendix B shows that the estimate of the widefield sequence for a time-dependent fluores-



cence is given by

𝑢(𝒑, 𝑡 + Δ𝑡 ) + 𝑢(𝒑, 𝑡 ) =

∫
𝑧≥0

𝑝𝐶 (𝒑 − 𝒒, 𝑧)(𝑓 (𝒒, 𝑧, 𝑡 + Δ𝑡 )𝜇(𝒒, 𝑧, 𝑡 + Δ𝑡 ) + 𝑓 (𝒒, 𝑧, 𝑡 )𝜇(𝒒, 𝑧, 𝑡 )) 𝑑𝒒𝑑𝑧.

If the illumination at 𝑡 + Δ𝑡 is complementary to that used at 𝑡 we have both 𝜋(𝒓 , 𝑡 + Δ𝑡 ) +

𝜋(𝒓 , 𝑡 ) = 1 and 𝜇(𝒒, 𝑧, 𝑡 + Δ𝑡 ) + 𝜇(𝒒, 𝑧, 𝑡 ) = 1. It follows that

𝑓 (𝒒, 𝑧, 𝑡 + Δ𝑡 )𝜇(𝒒, 𝑧, 𝑡 + Δ𝑡 ) + 𝑓 (𝒒, 𝑧, 𝑡 )𝜇(𝒒, 𝑧, 𝑡 ) =

𝑓 (𝒒, 𝑧, 𝑡 ) + 𝜇(𝒒, 𝑧, 𝑡 + Δ𝑡 )(𝑓 (𝒒, 𝑧, 𝑡 + Δ𝑡 ) − 𝑓 (𝒒, 𝑧, 𝑡 )).

A straightforward manipulation shows that

𝑢(𝒑, 𝑡 + Δ𝑡 ) + 𝑢(𝒑, 𝑡 ) =

𝑢𝑤 (𝒑, 𝑡 ) +∫
𝑧≥0

𝑝𝐶 (𝒑 − 𝒒, 𝑧)(𝑓 (𝒒, 𝑧, 𝑡 + Δ𝑡 ) − 𝑓 (𝒒, 𝑧, 𝑡 ))𝜇(𝒒, 𝑧, 𝑡 + Δ𝑡 ) 𝑑𝒒𝑑𝑧,

where 𝑢𝑤 denotes the widefield sequence. Observe the additive component depends only on the

variations of the fluorescence at times 𝑡 and 𝑡 + Δ𝑡 .

148



References
[1] S. R. y. Cajal, Reglॷ y consejos sobre investigación científica: los tónicos de la voluntad. Edi-

torial CSIC - CSIC Press, 1999.

[2] J.-A. Conchello and J. W. Lichtman, “Optical sectioning microscopy,” Nature Methods,
vol. 2, pp. 920–931, 12 2005.

[3] T. Itoh, “Fluorescence and phosphorescence from higher excited states of organic
molecules,” Chemical Reviews, vol. 112, pp. 4541–4568, 8 2012.

[4] P. T. C. So, C. Y.Dong, B. R.Masters, andK.M. Berland, “Two-photon excitation fluores-
cence microscopy,”Annual Review of Biomedical Engineering, vol. 2, no. 1, pp. 399–429,
2000.

[5] S. L. Jacques, “Optical properties of biological tissues: a review,” Physics in Medicine and
Bioloॽ, vol. 58, p. R37–R61, 5 2013.

[6] J.M. Schmitt andG.Kumar, “Turbulent nature of refractive-index variations in biological
tissue,”Optics Letters, vol. 21, pp. 1310–1312, 8 1996.

[7] J. S. O’Brien and E. L. Sampson, “Lipid composition of the normal human brain: gray
matter, whitematter, andmyelin,” Journal of Lipid Research, vol. 6, pp. 537–544, 10 1965.

[8] A.N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F.Ulrich, andH.-J. Schwarz-
maier, “Optical properties of selected native and coagulated human brain tissues in vitro
in the visible and near infrared spectral range,” Physics in Medicine and Bioloॽ, vol. 47,
p. 2059–2073, 6 2002.

[9] C. Mätzler, “MATLAB Functions for Mie Scattering and Absorption,” Tech. Rep. 2002-
08, Institut für Angewandte Physik, Bern, Switzerland, 2002.

[10] S. A. Prahl, “Mie scattering calculator,” 2018.

[11] W. F. Cheong, S. A. Prahl, andA. J.Welch, “A review of the optical properties of biological
tissues,” IEEE Journal of Quantum Electronics, vol. 26, pp. 2166–2185, 12 1990.

149



[12] P. Nelson, From Photon to Neuron: Light, Imaging, Vision. Princeton University Press,
May 2017.

[13] R. F. Cleveland and J. L. Ulcek, “Questions and answers about biological effects and po-
tential hazards of radiofrequency electromagnetic fields,”OET Bulletin, p. 1–36, 1999.

[14] S. J. Blanksby and G. B. Ellison, “Bond dissociation energies of organic molecules,” Ac-
counts of Chemical Research, vol. 36, pp. 255–263, 4 2003.

[15] S. R. Cherry, J. Sorenson, M. E. Phelps, and B. M. Methé, “Physics in nuclear medicine,”
Medical Physics, vol. 31, no. 8, pp. 2370–2371, 2004.

[16] A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by
coherent anti-stokes raman scattering,” Physical Review Letters, vol. 82, pp. 4142–4145, 5
1999.

[17] G. Scarcelli and S.H. Yun, “Confocal brillouinmicroscopy for three-dimensional mechan-
ical imaging,”Nature Photonics, vol. 2, pp. 39–43, 1 2008.

[18] F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nature Methods,
vol. 2, pp. 932–940, Dec. 2005.

[19] C. Lefort, “A review of biomedical multiphotonmicroscopy and its laser sources,” Journal
of Physics D: Applied Physics, vol. 50, p. 423001, 9 2017.

[20] N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu,
“In vivo three-photonmicroscopy of subcortical structures within an intact mouse brain,”
Nature Photonics, vol. 7, pp. 205–209, 3 2013.

[21] W. Min, S. Lu, M. Rueckel, G. R. Holtom, and X. S. Xie, “Near-degenerate four-wave-
mixing microscopy,”Nano Letters, vol. 9, pp. 2423–2426, 6 2009.

[22] M.-H. Yang, M. Abashin, P. A. Saisan, P. Tian, C. G. L. Ferri, A. Devor, and Y. Fainman,
“Non-degenerate 2-photon excitation in scattering medium for fluorescence microscopy,”
Optics Express, vol. 24, pp. 30173–30187, 12 2016.

[23] D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C.
Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-
harmonic generation microscopy,”Nature Methods, vol. 3, pp. 47–53, 1 2006.

150



[24] L.Moreaux,O. Sandre, and J.Mertz, “Membrane imagingby second-harmonic generation
microscopy,” JOSA B, vol. 17, pp. 1685–1694, 10 2000.

[25] S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated
emission: stimulated-emission-depletion fluorescence microscopy,”Optics Letters, vol. 19,
pp. 780–782, 6 1994.

[26] W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, and X. S. Xie, “Imaging chromophores
with undetectable fluorescence by stimulated emission microscopy,” Nature, vol. 461,
pp. 1105–1109, 10 2009.

[27] C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang,
and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated raman
scattering microscopy,” Science, vol. 322, pp. 1857–1861, 12 2008.

[28] W. Becker, “Fluorescence lifetime imaging – techniques and applications,” Journal of Mi-
croscopy, vol. 247, no. 2, pp. 119–136, 2012.

[29] J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnson, “Fluorescence lifetime
imaging of free and protein-boundNADH,” Proceedings of the National Academy of Sci-
encॸ, vol. 89, pp. 1271–1275, 2 1992.

[30] D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon,
and excited-state absorptionmicroscopy,” Journal of Biomedical Optics, vol. 12, p. 054004,
9 2007.

[31] V.Ntziachristos, “Going deeper thanmicroscopy: the optical imaging frontier in biology,”
Nature Methods, vol. 7, pp. 603–614, 8 2010.

[32] M. Born and E. Wolf, Principlॸ of Optics: Electromagnetic Theory of Propagation, Inter-
ference and Diffraction of Light. Cambridge University Press, 2 2000.

[33] J. W. Goodman, Introduction to Fourier Optics. Roberts and Company Publishers, 2005.

[34] E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,”
Archiv für mikroskopische Anatomie, vol. 9, pp. 413–468, 12 1873.

[35] E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino,
M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluores-
cent proteins at nanometer resolution,” Science, vol. 313, pp. 1642–1645, 9 2006.

151



[36] M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical
reconstruction microscopy (storm),”Nature Methods, vol. 3, pp. 793–796, 10 2006.

[37] H. A. Haus,Wavॸ and Fields in Optoelectronics. Prentice Hall, Incorporated, 1984.

[38] J. Pawley,Handbook of Biological ConfocalMicroscopy. Springer Science&BusinessMedia,
8 2010.

[39] W. Denk and K. Svoboda, “Photon upmanship: Why multiphoton imaging is more than
a gimmick,”Neuron, vol. 18, pp. 351–357, 3 1997.

[40] A. C. Chan, T. T. Wong, K. K. Wong, E. Y. Lam, and K. K. Tsia, “Revisit laser scan-
ning fluorescencemicroscopyperformanceunder fluorescence-lifetime-limited regime,” in
Imaging, Manipulation, and Analysॹ of Biomoleculॸ, Cells, and Tissuॸ XII, vol. 8947,
p. 894726, International Society for Optics and Photonics, 2014.

[41] D. Toomre and J. B. Pawley, “Disk-scanning confocal microscopy,” in Handbook Of Bi-
ological Confocal Microscopy (J. B. Pawley, ed.), pp. 221–238, Boston, MA: Springer US,
2006.

[42] T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith,
and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using bessel beam
plane illumination,”Nature Methods, vol. 8, pp. 417–423, 5 2011.

[43] P. J. Verveer, J. Swoger, F. Pampaloni, K. Greger, M. Marcello, and E. H. K. Stelzer,
“High-resolution three-dimensional imaging of large specimenswith light sheet–basedmi-
croscopy,”Nature Methods, vol. 4, pp. 311–313, 4 2007.

[44] H.-U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger,
J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-
dimensional visualization of neuronal networks in thewholemouse brain,”NatureMeth-
ods, vol. 4, pp. 331–336, 4 2007.

[45] S. Wolf, W. Supatto, G. Debrégeas, P. Mahou, S. G. Kruglik, J.-M. Sintes, E. Beaure-
paire, and R. Candelier, “Whole-brain functional imaging with two-photon light-sheet
microscopy,”Nature Methods, vol. 12, pp. 379–380, 5 2015.

[46] M. Tokunaga, N. Imamoto, and K. Sakata-Sogawa, “Highly inclined thin illumination
enables clear single-molecule imaging in cells,” Nature Methods, vol. 5, pp. 159–161, 2
2008.

152



[47] M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M.
Bruno, and E. M. C. Hillman, “Swept confocally-aligned planar excitation (scape) mi-
croscopy for high-speed volumetric imaging of behaving organisms,” Nature Photonics,
vol. 9, pp. 113–119, 2 2015.

[48] M. a. A. Neil, R. Juškaitis, and T. Wilson, “Method of obtaining optical sectioning by
using structured light in a conventional microscope,” Optics Letters, vol. 22, pp. 1905–
1907, 12 1997.

[49] D. Débarre, E. J. Botcherby, M. J. Booth, and T. Wilson, “Adaptive optics for structured
illumination microscopy,”Optics Express, vol. 16, pp. 9290–9305, 6 2008.

[50] L. Shao, “Suitable samples for structured-illumination microscopy,” 12 2014.

[51] M.G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using struc-
tured illumination microscopy,” Journal of Microscopy, vol. 198, pp. 82–87, 5 2000.

[52] D. Lim, T. N. Ford, K. K. Chu, and J. Mertz, “Optically sectioned in vivo imaging
with speckle illumination hilo microscopy,” Journal of Biomedical Optics, vol. 16, no. 1,
pp. 016014–016014–8, 2011.

[53] J. Mertz and J. Kim, “Scanning light-sheet microscopy in the whole mouse brain with hilo
background rejection,” Journal of Biomedical Optics, vol. 15, no. 1, 2010.

[54] E.Mudry, K. Belkebir, J. Girard, J. Savatier, E. L.Moal, C.Nicoletti,M.Allain, andA. Sen-
tenac, “Structured illumination microscopy using unknown speckle patterns,” Nature
Photonics, vol. 6, pp. 312–315, 5 2012.

[55] D. H. Kim, J. Kim, J. C. Marques, A. Grama, D. G. Hildebrand, W. Gu, J. M. Li, and
D. N. Robson, “Pan-neuronal calcium imaging with cellular resolution in freely swim-
ming zebrafish,”Nature methods, vol. 14, no. 11, p. 1107, 2017.

[56] Q. S. Hanley, P. J. Verveer, M. J. Gemkow, D. Arndt-Jovin, and T. M. Jovin, “An opti-
cal sectioning programmable array microscope implemented with a digital micromirror
device,” Journal of Microscopy, vol. 196, no. 3, pp. 317–331, 1999.

[57] T.Wilson,M. A. A. Neil, and R. Juskaitis, “Confocal microscopy apparatus andmethod,”
2 2004.

153



[58] J. Mertz, “Optical sectioning microscopy with planar or structured illumination,”Nature
Methods, vol. 8, pp. 811–819, 10 2011.

[59] E. M. Izhikevich,Dynamical Systems in Neuroscience. MIT Press, 2007.

[60] R. Sherman-Gold, ed., The Axon Guide for Electrophysioloॽ & Biophysics Laboratory
Techniquॸ. Axon Instruments, 1993.

[61] E. Neher and B. Sakmann, “Single-channel currents recorded from membrane of dener-
vated frog muscle fibres,”Nature, vol. 260, p. 799, 4 1976.

[62] J. M. Fernandez, E. Neher, and B. D. Gomperts, “Capacitance measurements reveal step-
wise fusion events in degranulating mast cells,”Nature, vol. 312, p. 453, 11 1984.

[63] F. A. Edwards, A. Konnerth, B. Sakmann, and T. Takahashi, “A thin slice preparation
for patch clamp recordings from neurones of the mammalian central nervous system,”
Pflügers Archiv, vol. 414, pp. 600–612, 9 1989.

[64] A. Citri and R. C. Malenka, “Synaptic plasticity: Multiple forms, functions, and mecha-
nisms,”Neuropsychopharmacoloॽ, vol. 33, pp. 18–41, 1 2008.

[65] R.Heim, D. C. Prasher, andR. Y. Tsien, “Wavelengthmutations and posttranslational au-
toxidation of green fluorescent protein,” Proceedings of the National Academy of Sciencॸ,
vol. 91, pp. 12501–12504, 12 1994.

[66] A. Miyawaki, J. Llopis, R. Heim, J. M. McCaffery, J. A. Adams, M. Ikura, and R. Y. Tsien,
“Fluorescent indicators for ca 2+based on green fluorescent proteins and calmodulin,”Na-
ture, vol. 388, p. 882, 8 1997.

[67] N. C. Shaner, R. E. Campbell, P. A. Steinbach, B. N. G. Giepmans, A. E. Palmer, and R. Y.
Tsien, “Improved monomeric red, orange and yellow fluorescent proteins derived from
Discosoma sp. red fluorescent protein,” Nature Biotechnoloॽ, vol. 22, pp. 1567–1572, 12
2004.

[68] Y. Zhao, S. Araki, J. Wu, T. Teramoto, Y.-F. Chang, M. Nakano, A. S. Abdelfattah, M. Fu-
jiwara, T. Ishihara, T. Nagai, and R. E. Campbell, “An expanded palette of genetically
encoded ca2+ indicators,” Science, vol. 333, pp. 1888–1891, 9 2011.

154



[69] J. Akerboom, N. Carreras Calderón, L. Tian, S. Wabnig, M. Prigge, J. Tolö, A. Gordus,
M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer,
C. Schüler, T.-W. Chen, K. S. Sarkisyan, J. S.Marvin, C. I. Bargmann, D. S. Kim, S. Kügler,
L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, “Genetically
encoded calcium indicators for multi-color neural activity imaging and combination with
optogenetics,” Frontiers in Molecular Neuroscience, vol. 6, 2013.

[70] H. Dana, Y. Sun, B. Mohar, B. Hulse, J. P. Hasseman, G. Tsegaye, A. Tsang, A. Wong,
R. Patel, J. J. Macklin, Y. Chen, A. Konnerth, V. Jayaraman, L. L. Looger, E. R. Schreiter,
K. Svoboda, andD. S. Kim, “High-performance gfp-based calcium indicators for imaging
activity in neuronal populations and microcompartments,” bioRxiv, p. 434589, 10 2018.

[71] D. E. Clapham, “Calcium signaling,” Cell, vol. 131, pp. 1047–1058, 12 2007.

[72] M. Z. Lin and M. J. Schnitzer, “Genetically encoded indicators of neuronal activity,”Na-
ture neuroscience, vol. 19, no. 9, p. 1142, 2016.

[73] K. Svoboda andR. Yasuda, “Principles of two-photon excitationmicroscopy and its appli-
cations to neuroscience,”Neuron, vol. 50, pp. 823–839, 6 2006.

[74] M. B. Ahrens, M. B. Orger, D. N. Robson, J. M. Li, and P. J. Keller, “Whole-brain
functional imaging at cellular resolution using light-sheet microscopy,”Nature Methods,
vol. 10, pp. 413–420, May 2013.

[75] P. Symvoulidis, A. Lauri, A. Stefanoiu, M. Cappetta, S. Schneider, H. Jia, A. Stelzl,
M. Koch, C. C. Perez, A. Myklatun, S. Renninger, A. Chmyrov, T. Lasser, W. Wurst,
V. Ntziachristos, and G. G.Westmeyer, “NeuBtracker—imaging neurobehavioral dynam-
ics in freely behaving fish,”Nature Methods, vol. 14, pp. 1079–1082, Nov. 2017.

[76] N. J. Sofroniew, D. Flickinger, J. King, and K. Svoboda, “A large field of view two-photon
mesoscope with subcellular resolution for in vivo imaging,” eLife, vol. 5, p. e14472, 6 2016.

[77] S. Weisenburger, F. Tejera, J. Demas, B. Chen, J. Manley, F. T. Sparks, F. Martínez Traub,
T. Daigle, H. Zeng, A. Losonczy, and A. Vaziri, “Volumetric Ca2+ Imaging in the Mouse
Brain Using Hybrid Multiplexed Sculpted Light Microscopy,” Cell, vol. 177, pp. 1050–
1066.e14, May 2019.

155



[78] S. Weisenburger and A. Vaziri, “A Guide to Emerging Technologies for Large-Scale and
Whole-Brain Optical Imaging of Neuronal Activity,” Annual Review of Neuroscience,
vol. 41, no. 1, pp. 431–452, 2018.

[79] L.B.Cohen, “Changes inneuron structure during actionpotential propagation and synap-
tic transmission.,” Physiological Reviews, vol. 53, pp. 373–418, Apr. 1973.

[80] E. W. Miller, “Small molecule fluorescent voltage indicators for studying membrane po-
tential,” Current opinion in chemical bioloॽ, vol. 33, pp. 74–80, 8 2016.

[81] J. M. Kralj, A. D. Douglass, D. R. Hochbaum, D. Maclaurin, and A. E. Cohen, “Optical
recording of action potentials in mammalian neurons using a microbial rhodopsin,” Na-
ture Methods, vol. 9, pp. 90–95, 1 2012.

[82] D.R.Hochbaum, Y.Zhao, S. L. Farhi,N.Klapoetke, C.A.Werley, V.Kapoor, P. Zou, J.M.
Kralj, D. Maclaurin, N. Smedemark-Margulies, J. L. Saulnier, G. L. Boulting, C. Straub,
Y.K. Cho,M.Melkonian, G.K.-S.Wong,D. J.Harrison, V.N.Murthy, B. L. Sabatini, E. S.
Boyden, R. E. Campbell, and A. E. Cohen, “All-optical electrophysiology in mammalian
neurons using engineered microbial rhodopsins,” Nature Methods, vol. 11, pp. 825–833,
8 2014.

[83] Y. Adam, J. J. Kim, S. Lou, Y. Zhao, M. E. Xie, D. Brinks, H. Wu, M. A. Mostajo-Radji,
S. Kheifets, V. Parot, S. Chettih, K. J. Williams, B. Gmeiner, S. L. Farhi, L. Madisen,
E. K. Buchanan, I. Kinsella, D. Zhou, L. Paninski, C. D. Harvey, H. Zeng, P. Arlotta,
R. E. Campbell, and A. E. Cohen, “Voltage imaging and optogenetics reveal behaviour-
dependent changes in hippocampal dynamics,”Nature, p. 1, May 2019.

[84] Y. Kubota, F. Karube, M. Nomura, A. T. Gulledge, A. Mochizuki, A. Schertel, and
Y. Kawaguchi, “Conserved properties of dendritic trees in four cortical interneuron sub-
types,” Scientific Reports, vol. 1, p. 89, Sept. 2011.

[85] Y. Xu, P. Zou, and A. E. Cohen, “Voltage imaging with genetically encoded indicators,”
Current opinion in chemical bioloॽ, vol. 39, pp. 1–10, 8 2017.

[86] S. Sankaranarayanan,D.DeAngelis, J. E.Rothman, andT.A.Ryan, “Theuse of phluorins
for optical measurements of presynaptic activity,” Biophysical Journal, vol. 79, pp. 2199–
2208, 10 2000.

156



[87] V.M. Paramonov, V.Mamaeva, C. Sahlgren, and A. Rivero-Muller, “Genetically-encoded
tools for cAMP probing and modulation in living systems,” Frontiers in Pharmacoloॽ,
vol. 6, 2015.

[88] J. Berg, Y. P. Hung, and G. Yellen, “A genetically encoded fluorescent reporter of atp:adp
ratio,”Nature Methods, vol. 6, pp. 161–166, 2 2009.

[89] J. S. Marvin, B. G. Borghuis, L. Tian, J. Cichon, M. T. Harnett, J. Akerboom, A. Gordus,
S. L. Renninger, T.-W. Chen, C. I. Bargmann, M. B. Orger, E. R. Schreiter, J. B. Demb,
W.-B. Gan, S. A. Hires, and L. L. Looger, “An optimized fluorescent probe for visualizing
glutamate neurotransmission,”Nature Methods, vol. 10, pp. 162–170, 2 2013.

[90] M. Jing, P. Zhang, G. Wang, J. Feng, L. Mesik, J. Zeng, H. Jiang, S. Wang, J. C. Looby,
N. A. Guagliardo, L. W. Langma, J. Lu, Y. Zuo, D. A. Talmage, L. W. Role, P. Q. Bar-
rett, L. I. Zhang, M. Luo, Y. Song, J. J. Zhu, and Y. Li, “A genetically encoded fluores-
cent acetylcholine indicator for in vitro and in vivo studies,”Nature Biotechnoloॽ, vol. 36,
pp. 726–737, 8 2018.

[91] F. Sun, J. Zeng,M. Jing, J. Zhou, J. Feng, S. F.Owen, Y. Luo, F. Li,H.Wang, T. Yamaguchi,
Z. Yong, Y. Gao,W. Peng, L.Wang, S. Zhang, J. Du, D. Lin,M. Xu, A. C. Kreitzer, G. Cui,
and Y. Li, “A genetically encoded fluorescent sensor enables rapid and specific detection of
dopamine in flies, fish, and mice,” Cell, vol. 174, pp. 481–496.e19, 7 2018.

[92] J. Feng, C. Zhang, J. E. Lischinsky, M. Jing, J. Zhou, H. Wang, Y. Zhang, A. Dong, Z. Wu,
H. Wu, W. Chen, P. Zhang, J. Zou, S. A. Hires, J. J. Zhu, G. Cui, D. Lin, J. Du, and Y. Li,
“A genetically encoded fluorescent sensor for rapid and specific in vivo detection of nore-
pinephrine,”Neuron, vol. 0, 3 2019.

[93] A. Colom, E. Derivery, S. Soleimanpour, C. Tomba, M. D.Molin, N. Sakai, M. González-
Gaitán, S. Matile, and A. Roux, “A fluorescent membrane tension probe,”Nature Chem-
istry, vol. 10, p. 1118, 11 2018.

[94] W.Wang, C. K.Kim, andA. Y. Ting, “Molecular tools for imaging and recording neuronal
activity,”Nature Chemical Bioloॽ, vol. 15, p. 101, 2 2019.

[95] E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale,
genetically targeted optical control of neural activity,”Nature Neuroscience, vol. 8, p. 1263,
9 2005.

157



[96] K. Deisseroth and P. Hegemann, “The form and function of channelrhodopsin,” Science,
vol. 357, p. eaan5544, 9 2017.

[97] C. K. Kim, A. Adhikari, and K. Deisseroth, “Integration of optogenetics with comple-
mentary methodologies in systems neuroscience,” Nature Reviews Neuroscience, vol. 18,
pp. 222–235, 4 2017.

[98] W. E. Allen, I. V. Kauvar, M. Z. Chen, E. B. Richman, S. J. Yang, K. Chan, V. Gradinaru,
B. E. Deverman, L. Luo, and K. Deisseroth, “Global Representations of Goal-Directed
Behavior in Distinct Cell Types of Mouse Neocortex,” Neuron, vol. 94, pp. 891–907.e6,
May 2017.

[99] O. A. Shemesh, D. Tanese, V. Zampini, C. Linghu, K. Piatkevich, E. Ronzitti, E. Papagiak-
oumou, E. S. Boyden, and V. Emiliani, “Temporally precise single-cell-resolution optoge-
netics,”Nature Neuroscience, vol. 20, p. 1796, 12 2017.

[100] E. Ronzitti, C. Ventalon, M. Canepari, B. C. Forget, E. Papagiakoumou, and V. Emil-
iani, “Recent advances in patterned photostimulation for optogenetics,” Journal of Optics,
vol. 19, p. 113001, 10 2017.

[101] M. Mahn, L. Gibor, P. Patil, K. C.-K. Malina, S. Oring, Y. Printz, R. Levy, I. Lampl, and
O. Yizhar, “High-efficiency optogenetic silencing with soma-targeted anion-conducting
channelrhodopsins,”Nature Communications, vol. 9, p. 4125, Oct. 2018.

[102] A. Forli, D. Vecchia, N. Binini, F. Succol, S. Bovetti, C. Moretti, F. Nespoli, M. Mahn,
C. A. Baker, M. M. Bolton, O. Yizhar, and T. Fellin, “Two-Photon Bidirectional Control
and Imaging ofNeuronal ExcitabilitywithHigh Spatial Resolution InVivo,”Cell Reports,
vol. 22, pp. 3087–3098, Mar. 2018.

[103] I.-W. Chen, E. Papagiakoumou, and V. Emiliani, “Towards circuit optogenetics,” Current
Opinion in Neurobioloॽ, vol. 50, pp. 179–189, June 2018.

[104] T.-W. Chen, N. Li, K. Daie, and K. Svoboda, “A Map of Anticipatory Activity in Mouse
Motor Cortex,”Neuron, vol. 94, pp. 866–879.e4, May 2017.

[105] A. E. Cohen and S. L. Farhi, “Sculpting light to reveal brain function,” Nature Neuro-
science, vol. 21, p. 776, 6 2018.

158



[106] A.M. Stamatakis,M. J. Schachter, S. Gulati, K. T. Zitelli, S.Malanowski, A. Tajik, C. Fritz,
M.Trulson, and S. L.Otte, “SimultaneousOptogenetics andCellularResolutionCalcium
Imaging During Active Behavior Using a Miniaturized Microscope,” Frontiers in Neuro-
science, vol. 12, 2018.

[107] J. P. Rickgauer, K. Deisseroth, and D. W. Tank, “Simultaneous cellular-resolution optical
perturbation and imagingofplace cell firing fields,”NatureNeuroscience, vol. 17, pp. 1816–
1824, 12 2014.

[108] A.M. Packer, L. E. Russell, H.W. P.Dalgleish, andM.Häusser, “Simultaneous all-optical
manipulation and recording of neural circuit activity with cellular resolution in vivo,”Na-
ture Methods, vol. 12, pp. 140–146, 2 2015.

[109] L. Carrillo-Reid,W. Yang, Y. Bando,D. S. Peterka, andR. Yuste, “Imprinting and recalling
cortical ensembles,” Science, vol. 353, pp. 691–694, 8 2016.

[110] M. dal Maschio, J. C. Donovan, T. O. Helmbrecht, and H. Baier, “Linking Neurons to
Network Function and Behavior by Two-Photon Holographic Optogenetics and Volu-
metric Imaging,”Neuron, vol. 94, pp. 774–789.e5, May 2017.

[111] D. Förster, M. D. Maschio, E. Laurell, and H. Baier, “An optogenetic toolbox for unbi-
ased discovery of functionally connected cells in neural circuits,”Nature Communications,
vol. 8, p. 116, July 2017.

[112] A. R. Mardinly, I. A. Oldenburg, N. C. Pégard, S. Sridharan, E. H. Lyall, K. Chesnov,
S. G. Brohawn, L. Waller, and H. Adesnik, “Precise multimodal optical control of neural
ensemble activity,”Nature Neuroscience, vol. 21, p. 881, 6 2018.

[113] S. N. Chettih and C. D. Harvey, “Single-neuron perturbations reveal feature-specific com-
petition in v1,”Nature, vol. 567, p. 334, 3 2019.

[114] K. Podgorski and G. Ranganathan, “Brain heating induced by near-infrared lasers during
multiphoton microscopy,” Journal of Neurophysioloॽ, vol. 116, pp. 1012–1023, 6 2016.

[115] A. Picot, S. Dominguez, C. Liu, I.-W. Chen, D. Tanese, E. Ronzitti, P. Berto, E. Papa-
giakoumou, D. Oron, G. Tessier, B. C. Forget, and V. Emiliani, “Temperature Rise under
Two-PhotonOptogeneticBrain Stimulation,”Cell Reports, vol. 24, pp. 1243–1253.e5, July
2018.

159



[116] L. Z. Fan, R. Nehme, Y. Adam, E. S. Jung, H. Wu, K. Eggan, D. B. Arnold, and A. E.
Cohen, “All-optical synaptic electrophysiology probes mechanism of ketamine-induced
disinhibition,”Nature Methods, vol. 15, p. 823, Oct. 2018.

[117] L. Z. Fan, S. Kheifets, U. L. Boehm, K. D. Piatkevich, H. Wu, V. Parot, M. Xie, E. S. Boy-
den, A. E. Takesian, and A. E. Cohen, “All-optical electrophysiology reveals excitation, in-
hibition, and neuromodulation in cortical layer 1,” bioRxiv, p. 614172, Apr. 2019.

[118] L. Grosenick, J. H. Marshel, and K. Deisseroth, “Closed-Loop and Activity-Guided Op-
togenetic Control,”Neuron, vol. 86, pp. 106–139, Apr. 2015.

[119] Z. Zhang, L. E. Russell, A. M. Packer, O. M. Gauld, and M. Häusser, “Closed-loop all-
optical interrogation of neural circuits in vivo,” Nature Methods, vol. 15, p. 1037, Dec.
2018.

[120] D. H. O’Connor, D. Huber, and K. Svoboda, “Reverse engineering the mouse brain,”
Nature, vol. 461, pp. 923–929, Oct. 2009.

[121] D. H. Hubel, “The brain,” Scientific American, vol. 241, no. 3, pp. 45–53, 1979.

[122] V. Emiliani, A. E. Cohen, K. Deisseroth, and M. Häusser, “All-optical interrogation of
neural circuits,” Journal of Neuroscience, vol. 35, pp. 13917–13926, 10 2015.

[123] J. T. Ting, B. R. Lee, P. Chong, G. Soler-Llavina, C. Cobbs, C. Koch,H. Zeng, and E. Lein,
“Preparation of acute brain slices using an optimized n-methyl-d-glucamine protective re-
coverymethod,” Journal of visualized experiments : JoVE, vol. (132). doi, p. 10.3791/53825,
2 2018.

[124] X. Jiang, S. Shen, C. R. Cadwell, P. Berens, F. Sinz, A. S. Ecker, S. Patel, and A. S. Tolias,
“Principles of connectivity among morphologically defined cell types in adult neocortex,”
Science, vol. 350, p. aac9462, 11 2015.

[125] M. T. Harnett, N.-L. Xu, J. C. Magee, and S. R. Williams, “Potassium channels control
the interaction between active dendritic integration compartments in layer 5 cortical pyra-
midal neurons,”Neuron, vol. 79, pp. 516–529, 8 2013.

[126] A. Blot and B. Barbour, “Ultra-rapid axon-axon ephaptic inhibition of cerebellar purkinje
cells by the pinceau,”Nature Neuroscience, vol. 17, pp. 289–295, 2 2014.

160



[127] C. J. Magnus, P. H. Lee, J. Bonaventura, R. Zemla, J. L. Gomez, M. H. Ramirez, X. Hu,
A. Galvan, J. Basu, M. Michaelides, and S. M. Sternson, “Ultrapotent chemogenetics for
research and potential clinical applications,” Science, vol. 364, p. eaav5282, Apr. 2019.

[128] L. Petreanu, D. Huber, A. Sobczyk, and K. Svoboda, “Channelrhodopsin-2–assisted cir-
cuit mapping of long-range callosal projections,” Nature Neuroscience, vol. 10, pp. 663–
668, 5 2007.

[129] M. Inoue, A. Takeuchi, S.-i. Horigane, M. Ohkura, K. Gengyo-Ando, H. Fujii, S. Kamijo,
S. Takemoto-Kimura, M. Kano, J. Nakai, K. Kitamura, and H. Bito, “Rational design of
a high-affinity, fast, red calcium indicator r-camp2,” Nature Methods, vol. 12, pp. 64–70,
1 2015.

[130] N. C. Klapoetke, Y. Murata, S. S. Kim, S. R. Pulver, A. Birdsey-Benson, Y. K. Cho, T. K.
Morimoto, A. S. Chuong, E. J. Carpenter, Z. Tian, J. Wang, Y. Xie, Z. Yan, Y. Zhang, B. Y.
Chow, B. Surek, M. Melkonian, V. Jayaraman, M. Constantine-Paton, G. K.-S. Wong,
and E. S. Boyden, “Independent optical excitation of distinct neural populations,”Nature
Methods, vol. 11, pp. 338–346, 3 2014.

[131] T.-W. Chen, T. J.Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter,
R.A.Kerr,M.B.Orger, V. Jayaraman, L. L. Looger, K. Svoboda, andD. S.Kim, “Ultrasen-
sitive fluorescent proteins for imaging neuronal activity,” Nature, vol. 499, pp. 295–300,
7 2013.

[132] S. Klein, M. Staring, K. Murphy, M. A. Viergever, and J. P. W. Pluim, “elastix: A toolbox
for intensity-based medical image registration,” IEEE Transactions on Medical Imaging,
vol. 29, pp. 196–205, 1 2010.

[133] Y.-L. Huang, A. S. Walker, and E. W. Miller, “A photostable silicon rhodamine platform
for optical voltage sensing,” Journal of the American Chemical Society, vol. 137, pp. 10767–
10776, 8 2015.

[134] J. Freeman,N.Vladimirov, T. Kawashima, Y.Mu,N. J. Sofroniew,D. V. Bennett, J. Rosen,
C. T. Yang, L. L. Looger, and M. B. Ahrens, “Mapping brain activity at scale with cluster
computing,”Nature methods, vol. 11, pp. 941–950, 9 2014.

[135] O. Skocek, T. Nöbauer, L. Weilguny, F. M. Traub, C. N. Xia, M. I. Molodtsov, A. Grama,
M. Yamagata, D. Aharoni, D. D. Cox, P. Golshani, and A. Vaziri, “High-speed volumetric

161



imaging of neuronal activity in freely moving rodents,” Nature Methods, vol. 15, p. 429,
6 2018.

[136] A. Eder and H. Bading, “Calcium signals can freely cross the nuclear envelope in hippo-
campal neurons: somatic calcium increases generate nuclear calcium transients,” BMC
neuroscience, vol. 8, p. 57, 7 2007.

[137] C. P. Bengtson, H. E. Freitag, J. M. Weislogel, and H. Bading, “Nuclear calcium sensors
reveal that repetition of trains of synaptic stimuli boosts nuclear calcium signaling in ca1
pyramidal neurons,” Biophysical journal, vol. 99, pp. 4066–4077, 12 2010.

[138] J. Mazzaferri, D. Kunik, J. M. Belisle, K. Singh, S. Lefrançois, and S. Costantino, “Analyz-
ing speckle contrast for hilo microscopy optimization,”Optics Express, vol. 19, pp. 14508–
14517, 7 2011.

[139] D. Lim, K. K. Chu, and J. Mertz, “Wide-field fluorescence sectioning with hybrid speckle
and uniform-illuminationmicroscopy,”Optics letters, vol. 33, no. 16, pp. 1819–1821, 2008.

[140] M. J.Gunthorpe, C.H.Large, andR. Sankar, “Themechanismof actionof retigabine (ezo-
gabine), a first-in-class k+ channel opener for the treatment of epilepsy,” Epilepsia, vol. 53,
pp. 412–424, 3 2012.

[141] E. S. Lein,M. J.Hawrylycz,N.Ao,M.Ayres, A. Bensinger, A. Bernard, A. F. Boe,M. S. Bo-
guski, K. S. Brockway, E. J. Byrnes, L. Chen, L. Chen, T.-M. Chen,M. Chi Chin, J. Chong,
B. E. Crook, A. Czaplinska, C. N. Dang, S. Datta, N. R. Dee, A. L. Desaki, T. Desta,
E. Diep, T. A. Dolbeare, M. J. Donelan, H.-W. Dong, J. G. Dougherty, B. J. Duncan, A. J.
Ebbert, G. Eichele, L. K. Estin, C. Faber, B. A. Facer, R. Fields, S. R. Fischer, T. P. Fliss,
C. Frensley, S. N. Gates, K. J. Glattfelder, K. R. Halverson, M. R. Hart, J. G. Hohmann,
M. P. Howell, D. P. Jeung, R. A. Johnson, P. T. Karr, R. Kawal, J. M. Kidney, R. H.
Knapik, C. L. Kuan, J. H. Lake, A. R. Laramee, K. D. Larsen, C. Lau, T. A. Lemon, A. J.
Liang, Y. Liu, L. T. Luong, J. Michaels, J. J. Morgan, R. J. Morgan, M. T. Mortrud, N. F.
Mosqueda, L. L. Ng, R. Ng, G. J. Orta, C. C. Overly, T. H. Pak, S. E. Parry, S. D. Pathak,
O. C. Pearson, R. B. Puchalski, Z. L. Riley, H. R. Rockett, S. A. Rowland, J. J. Royall,M. J.
Ruiz, N. R. Sarno, K. Schaffnit, N. V. Shapovalova, T. Sivisay, C. R. Slaughterbeck, S. C.
Smith, K. A. Smith, B. I. Smith, A. J. Sodt, N. N. Stewart, K.-R. Stumpf, S. M. Sunkin,
M. Sutram, A. Tam, C. D. Teemer, C. Thaller, C. L. Thompson, L. R. Varnam, A. Visel,
R. M. Whitlock, P. E. Wohnoutka, C. K. Wolkey, V. Y. Wong, M. Wood, M. B. Yaylaoglu,

162



R. C. Young, B. L. Youngstrom, X. Feng Yuan, B. Zhang, T. A. Zwingman, and A. R.
Jones, “Genome-wide atlas of gene expression in the adult mouse brain,”Nature, vol. 445,
pp. 168–176, 1 2007.

[142] M. J. Saganich, E. Machado, and B. Rudy, “Differential expression of genes encoding
subthreshold-operating voltage-gated k+ channels in brain,” The Journal of neuroscience :
the official journal of the Society for Neuroscience, vol. 21, pp. 4609–4624, 7 2001.

[143] L.A. Ibrahim, L.Mesik, X. Y. Ji,Q. Fang,H. F. Li, Y.T. Li, B. Zingg, L. I. Zhang, andH.W.
Tao, “Cross-modality sharpening of visual cortical processing through layer-1-mediated
inhibition and disinhibition,”Neuron, vol. 89, pp. 1031–1045, 3 2016.

[144] Y. W. Wu, J. I. Kim, V. L. Tawfik, R. R. Lalchandani, G. Scherrer, and J. B. Ding, “Input-
and cell-type-specific endocannabinoid-dependent ltd in the striatum,”Cell reports, vol. 10,
pp. 75–87, 1 2015.

[145] A. Saunders, C. Johnson, and B. Sabatini, “Novel recombinant adeno-associated viruses
for cre activated and inactivated transgene expression in neurons,” Frontiers in Neural
Circuits, vol. 6, 2012.

[146] W. Afshar Saber, F. M. Gasparoli, M. G. Dirks, F. J. Gunn-Moore, and M. Antkowiak,
“All-optical assay to study biological neural networks,” Frontiers in Neuroscience, vol. 12,
2018.

[147] Y. Kozorovitskiy, R. Peixoto, W. Wang, A. Saunders, and B. L. Sabatini, “Neuromodula-
tion of excitatory synaptogenesis in striatal development,” eLife, vol. 4, p. e10111, 11 2015.

[148] A. Naka and H. Adesnik, “Inhibitory circuits in cortical layer 5,” Frontiers in Neural Cir-
cuits, vol. 10, 2016.

[149] H. Adesnik, “Layer-specific excitation/inhibition balances during neuronal synchroniza-
tion in the visual cortex,” The Journal of Physioloॽ, vol. 596, no. 9, pp. 1639–1657, 2018.

[150] G. Szalay, L. Judak, G. Katona, K. Ocsai, G. Juhasz, M. Veress, Z. Szadai, A. Feher,
T. Tompa, B. Chiovini, P. Maak, and B. Rozsa, “Fast 3d imaging of spine, dendritic, and
neuronal assemblies in behaving animals,”Neuron, vol. 92, pp. 723–738, 10 2016.

[151] K. Y. Chan, M. J. Jang, B. B. Yoo, A. Greenbaum, N. Ravi, W. L. Wu, L. Sanchez-
Guardado, C. Lois, S. K. Mazmanian, B. E. Deverman, and V. Gradinaru, “Engineered

163



aavs for efficient noninvasive gene delivery to the central and peripheral nervous systems,”
Nature neuroscience, vol. 20, pp. 1172–1179, 8 2017.

[152] S. L. Farhi, V. J. Parot, A. Grama, M. Yamagata, A. S. Abdelfattah, Y. Adam, S. Lou, J. J.
Kim,R. E. Campbell, D.D.Cox, andA. E. Cohen, “Wide-area all-optical neurophysiology
in acute brain slices,” Journal of Neuroscience, pp. 0168–19, Apr. 2019.

[153] M. Tribus and E. C. McIrvine, “Energy and information,” Scientific American, vol. 225,
no. 3, pp. 179–188, 1971.

[154] E. A. Rodriguez, R. E. Campbell, J. Y. Lin, M. Z. Lin, A. Miyawaki, A. E. Palmer, X. Shu,
J. Zhang, and R. Y. Tsien, “The growing and glowing toolbox of fluorescent and photoac-
tive proteins,” Trends in biochemical sciencॸ, vol. 42, no. 2, pp. 111–129, 2017.

[155] V. Sample, S. Mehta, and J. Zhang, “Genetically encoded molecular probes to visualize
and perturb signaling dynamics in living biological systems,” J Cell Sci, vol. 127, no. 6,
pp. 1151–1160, 2014.

[156] M. Saxena, G. Eluru, and S. S. Gorthi, “Structured illumination microscopy,” Advancॸ
in Optics and Photonics, vol. 7, no. 2, pp. 241–275, 2015.

[157] E. A. Pnevmatikakis, D. Soudry, Y. Gao, T. A. Machado, J. Merel, D. Pfau, T. Reardon,
Y. Mu, C. Lacefield, W. Yang, et al., “Simultaneous denoising, deconvolution, and demix-
ing of calcium imaging data,”Neuron, vol. 89, no. 2, pp. 285–299, 2016.

[158] T. Nöbauer, O. Skocek, A. J. Pernía-Andrade, L.Weilguny, F.M. Traub,M. I.Molodtsov,
and A. Vaziri, “Video rate volumetric ca 2+ imaging across cortex using seeded iterative
demixing (sid) microscopy,”Nature methods, vol. 14, no. 8, p. 811, 2017.

[159] N. C. Pégard, H.-Y. Liu, N. Antipa,M.Gerlock, H. Adesnik, and L.Waller, “Compressive
light-field microscopy for 3d neural activity recording,”Optica, vol. 3, no. 5, pp. 517–524,
2016.

[160] T. W. Dunn, Y. Mu, S. Narayan, O. Randlett, E. A. Naumann, C.-T. Yang, A. F. Schier,
J. Freeman, F. Engert, and M. B. Ahrens, “Brain-wide mapping of neural activity control-
ling zebrafish exploratory locomotion,” Elife, vol. 5, p. e12741, 2016.

[161] D. W. Tufts, R. Kumaresan, and I. Kirsteins, “Data adaptive signal estimation by singular
value decomposition of a data matrix,” Proceedings of the IEEE, vol. 70, no. 6, pp. 684–
685, 1982.

164



[162] T. Furnival, R. K. Leary, and P. A. Midgley, “Denoising time-resolved microscopy image
sequences with singular value thresholding,”Ultramicroscopy, vol. 178, pp. 112–124, 2017.

[163] S. Lou, Y. Adam, E. N. Weinstein, E. Williams, K. Williams, V. Parot, N. Kavokine,
S. Liberles, L. Madisen, H. Zeng, et al., “Genetically targeted all-optical electrophysiol-
ogy with a transgenic cre-dependent optopatch mouse,” Journal of Neuroscience, vol. 36,
no. 43, pp. 11059–11073, 2016.

[164] M. A. Lauterbach, E. Ronzitti, J. R. Sternberg, C. Wyart, and V. Emiliani, “Fast calcium
imaging with optical sectioning via hilo microscopy,” PloS one, vol. 10, p. e0143681, 12
2015.

[165] V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candès, and M. Dahan, “Compressive
fluorescence microscopy for biological and hyperspectral imaging,” Proceedings of the Na-
tional Academy of Sciencॸ, vol. 109, no. 26, pp. E1679–E1687, 2012.

[166] L. Zhu, W. Zhang, D. Elnatan, and B. Huang, “Faster storm using compressed sensing,”
Nature methods, vol. 9, no. 7, p. 721, 2012.

[167] W. Meiniel, P. Spinicelli, E. D. Angelini, A. Fragola, V. Loriette, F. Orieux, E. Sepul-
veda, and J. Olivo-Marin, “Reducing data acquisition for fast structured illumination
microscopy using compressed sensing,” in 2017 IEEE 14th International Symposium on
Biomedical Imaging (ISBI 2017), pp. 32–35, April 2017.

[168] V. J. Parot, C. Sing-Long, Y. Adam, U. L. Böhm, L. Z. Fan, S. L. Farhi, and A. E. Cohen,
“Compressed hadamard microscopy for high-speed optically sectioned neuronal activity
recordings,” Journal of Physics D: Applied Physics, vol. 52, p. 144001, 2 2019.

[169] K. Fazel, “Performance of CDMA/OFDM for mobile communication system,” in Pro-
ceedings of 2nd IEEE International Conference on Universal Personal Communications,
vol. 2, pp. 975–979 vol.2, Oct. 1993.

[170] LIGO Scientific Collaboration and Virgo Collaboration, “Observation of Gravitational
Waves from a Binary BlackHoleMerger,” Physical Review Letters, vol. 116, p. 061102, Feb.
2016.

[171] M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed
sensing for rapid MR imaging,”Magnetic Resonance in Medicine, vol. 58, pp. 1182–1195,
Dec. 2007.

165



[172] TheEventHorizonTelescopeCollaboration, “FirstM87EventHorizonTelescopeResults.
IV. Imaging the Central Supermassive Black Hole,” The Astrophysical Journal Letters,
p. 52, 2019.

[173] E. Candes andM.Wakin, “An IntroductionToCompressive Sampling,” IEEE Signal Pro-
cessing Magazine, vol. 25, pp. 21–30, Mar. 2008.

[174] F. H. Yu, M. Mantegazza, R. E. Westenbroek, C. A. Robbins, F. Kalume, K. A. Burton,
W. J. Spain, G. S. McKnight, T. Scheuer, and W. A. Catterall, “Reduced sodium current
in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy,”
Nature Neuroscience, vol. 9, p. 1142, Sept. 2006.

[175] C. W. Ang, G. C. Carlson, and D. A. Coulter, “Massive and Specific Dysregulation of
Direct Cortical Input to the Hippocampus in Temporal Lobe Epilepsy,” Journal of Neu-
roscience, vol. 26, pp. 11850–11856, Nov. 2006.

166


	Abstract
	Contents
	Dedication
	Introduction
	Microscopy
	Interaction of visible light with biological matter
	Contrast mechanisms for biological imaging
	Image formation and background
	Optical sectioning

	Molecular tools for all-optical neurophysiology
	Optical recording of neuronal activity
	Optogenetic neural manipulation
	Simultaneous optical stimulation and recording
	Systems modeling of all-optical neurophysiology


	Wide-area all-optical neurophysiology in acute brain slices
	Introduction
	Materials and methods
	DNA constructs
	Cell culture and gene expression
	Imaging and electrophysiology in culture
	Hadamard imaging
	Software accessibility
	Animals and acute slice measurements
	Analysis of slice data

	Results
	A spectrally orthogonal Calcium sensor and channelrhodopsin for one-photon AON
	Hadamard microscopy enables optical sectioning in ultra-widefield images of acute brain slices
	Mapping excitability in acute slices
	Mapping pharmacological responses with Hadamard AON
	Probing functional connectivity with ultra-widefield AON
	High-speed Hadamard AON with compressed sensing

	Discussion
	Manuscript Information

	Compressed Hadamard microscopy
	Introduction
	Methods
	Computational modeling
	Microscope
	Animal experiments
	Illumination patterns
	Hadamard demodulation
	Theory of dynamic optical sectioning
	The relation between widefield and constant-pattern data.
	Dynamic optical sectioning from widefield data and coded illumination patterns
	Estimating widefield data from coded illumination patterns
	Pseudocode
	Robustness

	Results
	Numerical experiments
	Compressed Hadamard Imaging in live tissue

	Discussion
	Manuscript Information

	Conclusion
	Appendix Continuous domain image formation model
	Appendix The relation between confocal and Hadamard data
	Appendix Estimating widefield sequences from complementary illumination patterns
	References

