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ABSTRACT: Is it possible to form an image using light produced
by stimulated emission? Here we study light scatter off an assembly
of excited chromophores. Due to the Optical Theorem, stimulated
emission is necessarily accompanied by excited state Rayleigh
scattering. Both processes can be used to form images, though they
have different dependencies on scattering direction, wavelength
and chromophore configuration. Our results suggest several new
approaches to optical imaging using fluorophore excited states.

■ INTRODUCTION
In 1916, Einstein introduced the concept of stimulated
emission, wherein on-resonance radiation induces an electroni-
cally excited atom (or later, molecule) to transition to the
resonant lower energy state while simultaneously emitting a
quantum of radiation to conserve energy.1 Based on
thermodynamic considerations, Einstein deduced that the
photon emission must be “vollstan̈dig gerichtete Vorgan̈ge”
fully directed events.2 Subsequent analyses argued that for bulk
excited-state media the stimulated emission photons have the
same phase, direction, and frequency;3 i.e., they are
indistinguishable from the stimulating photons. Einstein’s
description of stimulated emission has been verified by
countless laboratory tests and underlies the working of lasers,
atomic clocks, and MRI machines.
Despite the clear successes of this description, a widely held

conceptual problem emerges when one considers stimulated
emission of an individual excited atom or dye molecule.
Consider stimulating light incident on an electronically excited
molecule.4 According to Maxwell’s equations, the molecule
radiates in a classical dipole emission pattern. This dipole
emission is not “fully directed” but is symmetric around the
transition dipole axis, bearing no relation to the spatial mode of
the stimulating light. Using this reasoning, it would be possible
to separate dipole radiation from stimulating light with a
suitable spatial filter, thus allowing the formation of back-
ground-free images from stimulated emission photons alone. In
this picture, directional emission is recovered for extended
homogeneous media composed of many excited dipoles (e.g., a
laser medium) because the emitting dipoles interfere
constructively in the forward direction and destructively in

all other directions.3 Is stimulated emission of an isolated
dipole “fully directed”, or is it in an isotropic dipole pattern, or
is it something else?
For clarity in the discussion that follows, we consider

fluorescent molecules, which absorb at one wavelength and
emit at a longer wavelength (see Figure 1). We name the beam
that prepares molecules in the excited state the “pump”. The
local excitation probability due to the pump, multiplied by the
local fluorophore density, sets the spatial profile of excited
fluorophores. In most of what follows we assume a spatially
homogeneous and saturating pump, whose only role is to
maintain much of the population in the excited state, i.e.,
population inverted. We name the beam that drives stimulated
emission the “dump”. Due to the possibility of interference
between the dump and the molecule emission, the coherence
properties of the dump are important.
One can imagine an experiment where a spatially

heterogeneous assembly of fluorophores, e.g., a fluorescently
labeled biological sample, is pumped into a population-
inverted state and then exposed to a dump beam tuned to
match an emission wavelength (Figure 1A). Are the photons
coming off the sample distinguishable from the unscattered
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dump photons? Can they be used to form an image (Figure
1B)?
Recently, Varma and co-workers performed an elegant

experiment along these lines using subdiffraction fluorescent
polystyrene beads or nitrogen-vacancy (N−V) doped nano-
diamonds.5 They pumped the sample into an excited state, and
then, they de-excited the sample using a collimated dump
beam. They arranged their optical system in a phase-contrast
configuration, wherein the emitted dipole field mixed with a
small amount of the phase-shifted unscattered dump to form
an image on the camera. These experiments clearly showed a
dipole-like pattern of emission that was coherent with the
dump and that could be used to form an image of the sample.
We must now reconcile the unambiguous experimental results
of Varma et al. with the widely held understanding that
stimulated emission goes into the spatial mode of the
stimulating beam. The Varma et al. experiments also raise
the question of whether the pure stimulated (i.e., coherent)
dipole field of the excited fluorophores can be detected in the
absence of interference with the dump.
Here we analyze light scatter off subwavelength assemblies

of excited fluorophores. Our main findings are as follows: (1)
Stimulated emission is always accompanied by excited state
Rayleigh scattering. (2) Stimulated emission and excited state
Rayleigh scattering have different angular distributions and
different spectral line shapes. Both modalities can, in principle
be used for image formation, though the Rayleigh scattering
signal from single excited molecules is very small. (3) For
subwavelength assemblies of noninteracting fluorophores, the
excited state Rayleigh scattering scales with the number of
fluorophores as N2, while stimulated emission scales only as N,
so for dense samples excited state Rayleigh scattering may
become substantial. (4) The subtle question of whether the
stimulated emission is directional or isotropic is formally
resolved by an appropriate expansion of the dump and
scattered electromagnetic fields in vector spherical harmonics
and calculation of the Poynting vector for dump + scattered
fields.
This last finding relies on the important distinction between

fields and energy density. The radiated energy density, which is
the observable in an experiment, results from a combination of
the excitation field and the scattered field, which are typically
in distinct modes. Thus, the concept of a particular “mode” for
the energy density of stimulated emission is not well-defined.
The spatial distribution of stimulated emission is, however,
determined by the overlap of the spatial modes of the incident
and scattered fields, so that stimulated emission photons are

indistinguishable from the dump photons. Nevertheless, by
comparing the profile of the dump with and without first
pumping the sample, one can form an image.6

Together, our results reconcile the apparent contradiction
between the experimental measurements of Varma et al.5 and
the widely held understanding that stimulated and stimulating
photons are indistinguishable. The calculations provide a
framework for designing imaging systems that use fluorophore
excited states to create contrast. Elements of the discussion
below have been presented in previous articles4,7−10 and
books,3,11,12 but to our knowledge, these ideas have not been
brought together in the context of imaging via light scatter off
excited matter.

■ THEORY
Classical Picture. First we introduce a classical picture of

light scattering off excited molecules, where the molecular
properties are described by a linear polarizability. For ground-
state molecules, this approach accurately describes absorption
and Rayleigh scattering. For excited-state molecules, the
classical picture accurately describes stimulated emission and
excited-state Rayleigh scattering, but not spontaneous
emission. In a later section we introduce a quantum
mechanical description which captures stimulated, Rayleigh,
and spontaneous radiation terms.
Consider a continuous-wave electromagnetic field Ei(r, t) =

Ei(r)e
−iωt, with an accompanying magnetic field that follows

Faraday’s law iωBi = ∇ × Ei. When the applied field impinges
on a dipolar scatterer, the resulting electric field E(r, t) is

= +E E Ei d (1)

where Ed(r, t) is the scattered field, and similarly for the
magnetic field. We take the real part of the fields to calculate
physical observables and assume that any additional time
dependence to Ei(r) is slow enough to satisfy the slowly
varying approximation, |Ėi(r)| ≪ ω |Ei(r)|.
The scattered E- and B-fields arise from the induced

oscillating dipole, which at large distances r are given by13

π
ω≃

ϵ
̂ × ′ × ̂

c r
tE r d r

1
4

( ( ) )d
0

2

2
(2)

π
ω≃

ϵ
̂ × ′

c c r
tB r d

1 1
4

( ( ))d
0

2

2
(3)

where r = rr,̂ d(t′) = dse
−iωt′ is evaluated at the retarded time t′

= (t − r/c), and we choose the origin to be at the position of

Figure 1. Light scattering off an electronically excited molecule. (A) Excitation and Stokes-shifted emission spectra of eGFP. The pump (blue)
excites the molecule. The dump (red) drives stimulated emission and scattering. (B) Dump plane wave driving stimulated emission of an excited
fluorophore. The stimulated dipolar emission is either (i) detected alone or (ii) detected via interference with the dump. (C) Lock-in detection
scheme. An oscillatory pump leads to modulated signal at the dump wavelength. The lock-in measurement could be done in a point-scanning mode
with a conventional lock-in amplifier, or via wide-field illumination and camera-based detection, with lock-in achieved by subtracting camera frames
with pump off from frames with pump on.
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the dipole. We also assume that ds satisfies the slowly varying
approximation |ḋs| ≪ ω |ds|.
The time averaged energy flow is determined by the

Poynting vector μ= ℜ[ × *S E B(1/2 )0 ]. The difference
between the Poynting vector of the total field Stot and the
Poynting vector of the incident field, Si, is

4,7,14,15

Δ = −

= +

S S S

S S ,
i

d

tot

cross (4)

where

μ
= ℜ[ × * + × *]S E B E B

1
2 i d d icross

0 (5)

μ
= ℜ[ × *]S E B

1
2d d d

0 (6)

and ℜ indicates the real part. The integral of ΔS·r ̂ over a far-
field surface of radius r gives the power added to or removed
from the total field, Pabs = ∫ r2ΔS·r ̂ dΩ following Poynting’s
theorem (see Appendix). By energy conservation, Pabs equals
the negative of the rate of change of the internal energy of the
molecule, −Pmol, and for purely elastic scattering, Pabs = 0.
The cross term, eq 5, represents interference of the scattered

field and the incident field. Clearly this term can only exist in
regions where the unscattered incident field is nonzero, so it
cannot be used for background-free detection. In a transmitted
light experiment, the interference term represents the
extinction (or in the case of stimulated emission, the
amplification), of the incident beam.7 Specifically, the power
added to or removed from the incident field (the “extinction”)
is given by Pext = ∫ r2Scross·r ̂ dΩ, where the integral is over a
far-field surface.
The second term, eq 6, represents Rayleigh scattering. The

integral of Sd gives the scattering power, PR = ∫ r2Sd·r ̂ dΩ. In a
Rayleigh scattering process, the internal energy of the molecule
does not change. Rather, energy is redirected from the incident
beam into a dipole radiation pattern.
In the classical theory where spontaneous emission is not

described, neither term in eq 4 can exist without the other, and
extinction (or amplification) of the incoming beam is
necessarily accompanied by Rayleigh radiation in a dipole
pattern. Equation 4 implies Pabs = Pext + PR, a result related to
the optical theorem.16 The quantities Pabs and Pext can be either
positive or negative, but PR is always positive.
Molecular Polarizabilities. For an isolated molecule, the

induced dipole moment d is related to the incident electric
field at the dipole by d = αEi, where α = α′ + iα″ is the
complex polarizability tensor. We will assume an isotropic
distribution of molecules, which makes α a scalar, α = (1/
3)Tr(α). The quantities α′ and α″ can be calculated at varying
levels of theory17 or determined experimentally. Here, we
describe how to calculate α′ and α″ for ground and excited
states in terms of experimentally measurable quantities.
The ground state spectrum of α″ can be calculated from an

optical extinction spectrum, as follows. The power extracted
from the incident field is Pd = ⟨Ei(0)·ḋ⟩t. Here Pd represents
the sum of the molecular excitation and Rayleigh scattering. In
this product, only the contribution due to α″ has nonzero
time-average. The quantity α″ is typically associated with
molecular excitation, but it also contributes to scattering via a

contribution from radiative damping. Thus, Pd = −Pext = Pmol +
PR, where Pmol = −Pabs is the power absorbed by the molecule.
The average intensity (power per area) of the incident beam

is Ii = (1/2)ϵ0c|Ei|
2. The total extinction cross section of the

molecule, σtot = Pd/Ii, is therefore

σ π
λ

α=
ϵ

″2
tot

0 (7)

The experimentally measured decadic molar extinction
coefficient ϵext(λ) (units molar−1 cm−1) and extinction cross
section (units m2) are directly proportional, related by

σ λ
λ

=
ϵ
N

( )
2.303 ( )

10tot
ext

A (8)

where NA is Avogadro’s number. eqs 8 and 7 together relate α″
to ϵext which can be measured in a spectrometer.
To calculate α″ in the excited state, we define the

normalized emission spectrum g( f), where f is the emission
frequency and ∫ g( f) df = 1 (the units of g( f) are inverse
frequency, or time). The stimulated emission cross section is
expected to be proportional to g( f). One can obtain the
proportionality factor from the radiative lifetime, an exper-
imentally measurable quantity. Specifically, the magnitude of
the stimulated emission cross-section is given by18

σ
γλ

π
=f g f( )

8
( )r

stim

2

(9)

where γr is the radiative decay rate constant. In fluorescent
molecules, radiative decay often competes with nonradiative
pathways, so γr can be determined experimentally from the
fluorescence quantum yield (QY) and the total lifetime, τ of
the excited state via A = QY/τ. Alternatively, γr can be
estimated from the absorption spectrum via the Strickler−Berg
equation.19

To convert from the stimulated emission cross section, eq 9,
to the excited-state polarizability, α″, a negative sign is
introduced into eq 7 to account for the increase of energy in
the incident beam in stimulated emission.20 Here we assume
there are no resonant higher-lying excited states to which the
molecule can be further excited.
In either the ground or excited states, the real part of the

polarizability, α′, can be calculated from α″ via the Kramers−
Kronig relations:

∫α λ λ
π

α λ
λ λ λ

λ′ = ″ ′
′ − ′

′
∞

( )
2 ( )

( )
d

2

0 2 2 (10)

where indicates the Cauchy principal part of the integral.
Given the sign change in α″ between ground and excited
states, eq 10 implies that there is also a sign change in α′.

■ RESULTS
Measured Lineshapes. There are two ways to configure

an imaging experiment with these concepts. One approach is
to mix a small amount of the phase-shifted dump with the
scattered field from the molecule. In this case the contrast is
dominated by an interference term as in eq 5, which is
connected to the material properties by eq 7. This was the
approach followed by Varma and co-workers.5 A related
approach was followed by Hwang and co-workers, who used a
Sagnac interferometer to measure the small phase shift due to
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the polarizability difference between a ground and excited state
fluorescent molecule.21

Alternatively, one could arrange a detector with appropriate
spatial and spectral filters to avoid collecting any of the
unscattered dump and spontaneous emission. In this case the
contrast would come purely from Rayleigh scattering, eq 6.
The far-field Rayleigh scattered intensity distribution is IR = Sd
· r ̂ = (1/2)ϵ0c|Ed|

2 (see Appendix), and the Rayleigh scattering
cross section is σR = PR/Ii, which evaluates to

σ π
λ

α=
ϵ

| |8
3R

3

0
2 4

2

(11)

For molecules with a Lorentzian absorption peak, the
extinction spectrum (eq 7) and the Rayleigh scattering
spectrum (eq 11) have the same line shape, but in general
for non-Lorentzian absorption peaks, extinction and Rayleigh
spectra can be different from each other. Furthermore, due to
the Stokes shift between ground-state absorption and excited-
state emission, each type of spectrum will also differ between
ground and excited state molecules.
To detect small signals from the excited state population,

one would likely use a lock-in detection approach, where the
pump at a fixed wavelength is modulated and one looks for
synchronous modulation at the dump wavelength (Figure 1C).
Thus, the image reflects the difference in signal between the
excited and ground state fluorophores.
Figure 2 shows an example of the predicted spectra for

enhanced green fluorescent protein (eGFP). Starting with
absorption and emission spectra, we calculated the line shapes
for lock-in measurements of transmitted and Rayleigh scattered
light. For a modulated pump at a fixed wavelength of the
absorption spectra, molecules in the ground state attenuate the
dump, while molecules in the excited state increase the dump
signal at each modulation cycle. Consequently, the line shape
of the lock-in signal for transmitted light is the sum of the
absorption and emission spectra and one does not resolve a
pure stimulated emission line shape (although on the red side
of the spectrum the contributions from absorption are
negligible). For Rayleigh scattering, both the ground state
and the excited state contribute positively to the signal, so the
line shape of the lock-in Rayleigh scattering spectrum is
proportional to the difference between ground and excited
state Rayleigh spectra.

One can estimate the photon detection rate for a lock-in
measurement of excited state Rayleigh scattering. Let us
presume a dump beam tuned to the (negative) peak of the
lock-in signal in Figure 2C, corresponding to a wavelength λ =
510 nm. If the dump beam has an intensity of 100 mW and is
focused to a spot 1 μm on a side, then the incident photon flux
is 2.6 × 1029 m−2 s−1. The lock-in measurement probes the
difference in Rayleigh scattering cross section between the
ground and excited states, which in this case is |ΔσR| = 6 ×
10−27m2, implying total scattering of 1,500 photons/s. A high-
quality optical system might detect 10% of these, giving 150
photons/s. While this count rate is certainly detectable, it will
be on a background of shot noise from light scatter off the
solvent or off imperfections or interfaces in the optical system.
Furthermore, since the dump is also near the peak of the
stimulated emission spectrum (see Figure 2A), the dump will
drive rapid depopulation of the excited state. Consequently,
the pump beam would need an intensity substantially higher
than that of the dump to maintain the population-inverted
state, which might lead to rapid photobleaching. Thus,
detection of single-molecule excited-state Rayleigh scattering
will likely be extremely difficult, though detection from
subwavelength assemblies could be feasible.

Density Dependence. Stimulated emission and excited
state Rayleigh scattering have different dependencies on the
density of fluorophores. This is most apparent by examining
eqs 5 and 6 or eqs 7 and 11. The stimulated emission signal is
proportional to Ed, while the Rayleigh signal is proportional to |
Ed|

2 in the far field. For N fluorophores whose spacing is large
compared to the Förster radius but small compared to the
wavelength, dipole−dipole interactions can be disregarded and
the fields add coherently, leading to a Ed proportional to N.
One thus expects the stimulated emission signal to scale
proportional to N and the Rayleigh signal to scale proportional
to N2. For dense samples and sufficiently large detuning, this
difference in density dependence can partially compensate for
the ≈106-fold difference in cross sections between stimulated
emission and excited state Rayleigh scattering (compare y-axis
scales on Figure 2, parts A and C).
For molecules freely diffusing in solution, the same

arguments that give the concentration dependence of
ground-state Rayleigh scattering also apply to excited-state
scattering.22 Specifically, since the fluctuations in density are
related to concentration C as C1/2, the Rayleigh signal from a

Figure 2. Lineshapes for excited-state imaging of GFP. (A) Extinction and stimulated emission spectra scaled to show respective cross sections. A
lock-in measurement of the transmitted dump beam as a function of dump wavelength, at fixed pump wavelength, is proportional to the sum of the
extinction and emission spectra. (B) Polarizabilities of the ground and excited states calculated using eqs 7, 8 and 10. (C) Rayleigh scattering
spectra. A lock-in measurement is proportional to the difference between the ground and excited state scattering spectra. In parts A and C, the
magnitudes of the lock-in signals will be proportional to the excitation probability per molecule and should not be referenced to the vertical axes.
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homogeneously pumped sample is proportional to C. Thus, the
free-solution Rayleigh signal has the same concentration
dependence as the absorption signal, for both ground and
excited state Rayleigh scattering.
Intensity Dependence. One might intuitively think that

by increasing dump power, one could arbitrarily increase the
power into the excited state Rayleigh scattering. Here we show
by classical argument that this is not the case. For a molecule
initially in the excited state, the power into Rayleigh scattering
is PR = IiσR. However, the amount of time during which this
power is radiated scales inversely with Ii due to driven de-
excitation (assuming here that stimulated emission is much
faster than spontaneous decay). The stimulated emission-
dominated excited-state lifetime is τstim = ℏω/σstimIi. Thus, the
mean energy into Rayleigh scattering per excitation-stimulated
emission cycle is bounded by UR = ℏωσR/σstim, which is
independent of Ii. Valhala used a similar scaling argument to
establish a bound on the stimulated emission power for an
isolated atom undergoing coherent Rabi flopping.4

The ratio of powers into Rayleigh scattering vs stimulated
emission depends on the dump wavelength because σR and
σstim have different spectra (see Figure 2). Thus, one may
enhance this ratio by suitable choice of dump wavelength.
Spontaneous emission further lowers UR by providing an
alternate decay pathway.
Where Does Stimulated Emission go? It is sometimes

said that stimulated emission goes into the “same mode” as the
light that induces the emission. While an electric or magnetic
field can be described as occupying modes in a particular basis,
the spatial distribution of stimulated emission represents the
excess energy associated with dipole emission. This excess in
energy is determined by the contribution of the incident and
dipolar fields to the interference terms Ei × Bd* and Ed × Bi* of
eq 5, and there is not a well-defined “mode” for stimulated
emission. Certainly, the fields must have some mode overlap to
interfere, and Scross vanishes wherever either Ei or Ed vanishes.
The detailed spatial structure, however, depends on the
amplitudes and relative phase fronts of both fields. The dipole

field is given by eq 2, but Ei can be any solution to Maxwell’s
equations.
Examples of the cross interference patterns for two different

Ei are shown in Figure 3. For a plane wave dump beam, the
time averaged excess stimulated energy density is largely in the
plane wave direction, but has interference fringe structure and
is not equivalent to the (constant) energy density of the
stimulating plane wave. Indeed, the optical theorem for purely
imaginary α (i.e., when λdump is exactly on resonance) implies
that the directly forward scattered light is 90° out of phase with
Ei so that the time averaged interference term vanishes directly
in the forward direction (Figure 3).
Next, we consider a converging Gaussian beam whose focus

is displaced somewhat beyond an excited fluorophore (Figure
3D−F). Again we consider a purely imaginary α, i.e., on-
resonance excitation. In this case the excess stimulated energy
density has a local maximum at the focus of Ei. The 90° Gouy
phase shift at the Gaussian focus of the incident beam
compensates for the 90° phase shift between Ei and Ed, leading
to constructive interference at the Gaussian focus.

Where Does Excited State Rayleigh Scattering Go? In
both of the above examples, the excited-state Rayleigh
scattering was a pure dipolar radiation pattern. However, in
extended media, the excited-state Rayleigh scattering can have
more complicated spatial structures due to its coherent nature.
For example, excited state Rayleigh scattering could be made
directional via a transient grating arrangement. Consider two
pump beams of equal frequency, intensity, and polarization,
with wavevectors k1 and k2. Their interference creates an
intensity grating defined by wavevector q = k1 − k2. The
wavelength of the intensity grating is23

π

λ θ

Λ =

=

q2 /

/(2 sin )mpump (12)

where θm is the half an gle between the pump beams in the
medium, and λpump = λpump

0 /n is the pump wavelength in the

Figure 3. Time-averaged component of the Poynting vector component along the propagation axis associated with the interference of the incident
and scattered fields, Scross (eq 5). (A−C) Incident plane wave polarized along the dipole oscillation (z-axis) interferes with scattered dipolar
radiation (assuming α′ = 0, α″ < 0). The excess energy density is forward directed, but with fringe structure and zero stimulated emission directly
on axis. Insets depict the observation planes (A) perpendicular and (B) parallel to the dipole axis. (C) Transverse distribution for x = 25 (in λ/2π
units). (D−F) Same as parts A−C with a Gaussian beam focused at x = 100 λ/2π past the dipole. Dotted lines depict the Gaussian waist of the
incident beam. The interference energy is largely contained within the boundaries of the incident beam. Note that while the plane wave dump
evokes zero stimulated emission on axis, the Gaussian dump evokes positive stimulated emission on axis at the Gaussian focus due to the Gouy
phase.
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medium, λpump
0 is the free-space wavelength, and n is the

refractive index of the medium.
Diffraction of the dump beam occurs when it satisfies the

Bragg condition,

θ
λ

=
Λ

m
sin

2
pump

(13)

where θ is the angle between the dump beam and the normal
to the plane of the transient grating, λpump is the dump
wavelength in the medium, and m is an integer. Here we
assume that the grating thickness, d, is much greater than Λ.
If the solution is sufficiently dilute, then the change in

complex dielectric constant due to optical excitation of the
fluorophores is small. The Clausius−Mossotti relation then
implies that the change in complex dielectric constant, Δϵ, is

αΔϵ
ϵ +

=
Δ

ϵ
N

2 3w

exc

0 (14)

where ϵw is the optical-frequency dielectric constant of the
solvent (here assumed to be water), Nexc is the number density
of excited-state fluorophores, and Δα is the difference in
molecular polarizability between excited and ground states. If
one further assumes that the pump beams are far from
saturating the transition to the excited states, then the induced
grating has a sinusoidal spatial dependence, and the diffraction
efficiency can be shown to be23

η

θ θ

=

= Δϵ′
ϵ′

+ Δϵ″
ϵ′

β θ−

I
I

k d k d
e sin

4 cos
sinh

4 cos
,d

w w

diff

in

/cos 2 20

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ (15)

where β0 is the extinction coefficient of the nonexcited medium
and k = 2π/λdump. Assuming that the arguments of the sin and
sinh functions are small, and neglecting numerical constants,
this result simplifies to

η α α∝ [ Δ ′ + Δ ″ ]C ( ) ( )2 2 2 (16)

Here the refractive index contrast of the grating is proportional
to dye concentration, C, so the intensity of the Bragg-scattered
dump beam is proportional to C2. This approach has been
applied to a variety of dye solutions.24

Equation 16 has the same spectral dependence as the lock-in
detection scheme plotted in Figure 2C. Indeed, the transient
grating experiment can be thought of a spatial analogue of a
time-domain lock-in experiment, wherein the diffraction arises
from the contrast between the polarizability of the ground-state
molecules and the excited-state molecules.
Quantum Picture. The quantum description in the

semiclassical approximation involves replacing d and Ed with
operators d̂ and Êd, while treating Ei classically. After solving
for the quantum dynamics of d̂, the radiated field from a
transition between states |j⟩ → |i⟩ is given by the quantum
version of eq 211

π
ω̂ =

ϵ
̂ × ̂ ′ × ̂−t

c r
tE r r d r( , )

1
2

( ( ) )d
0

2

2
(17)

where t′ = t − r/c, Êd(r,t) is the outgoing radiated field, and
d̂−(t) = dijσ̂−(t), with σ̂− = |i⟩⟨j|. Here, dij = ⟨j| er|i⟩ is the
dipole matrix element. In a complex multilevel system, the
fields from multiple transitions are summed. In the appendix

we show that the far-field integral in Pabs = ∫ r2ΔS·r ̂ dΩ is
equal to the time average integral of the excess energy density,
∫ r2 cΔu dΩ, where Δu = ϵ0(Ei·Ed* + (1/2)|Ed|

2). Focusing
therefore on the electric field, the quantum excess energy
density is given by the classical expression with Ed replaced
with expectation values of Êd,

⟨Δ ⟩ = ϵ ·⟨ ̂ ⟩ +
ϵ

⟨ ̂ ̂ ⟩†u E E E E
2i d d d0

0
(18)

The key differences between the quantum and classical
description are (1) quantum mechanics places limits on the
magnitude of Êd since the largest possible dipole moment
⟨d̂(t)⟩ is bounded by dij, (2) the quantum field gives rise to an
incoherent fluorescence contribution to the dipole radiation
that is independent of Ei, and (3) since ⟨Êd

†⟩⟨Êd⟩ ≤ ⟨Êd
†Êd⟩, the

coherent, classical Rayleigh scattering, PR ∝ |⟨Êd⟩|
2, differs from

the total dipole radiation (Rayleigh plus fluorescence), P4 π ∝
⟨|Êd|

2⟩, and makes up a fraction of the dipole radiation, PR/P4π
≤ 1. For fluorophore molecules, this fraction is typically much
smaller than one.
The maximum value of ⟨|Êd|

2⟩ is obtained for an undriven,
fully inverted state, and in general, it is proportional to the
excited state population. The molecule cannot emit photons
into the dipole pattern faster than this fluorescence rate, which
is given by the inverse radiative lifetime γr = τr

−1 with τr as the
spontaneous radiative lifetime. The increased radiation by a
molecule driven to de-excite during stimulated emission results
entirely from the interference terms, since the total energy in
the cross terms can be increased at fixed Ed by increasing Ei.
Driving an inverted molecule harder will not increase the total
dipole-radiated power. This is in contrast to the classical
description, or a noninverted unsaturated dipole, where Ed ∝
Ei and driving harder increases PR. If one merely collects
photons from the dipole radiation field while avoiding the
dump beam, the simple fluorescence rate is the upper limit on
the detection rate.
The coherent f raction of dipole radiation, on the other hand,

does depend on Ei. Although we argued above that the
inverted state Rayleigh scattering is weak, it is coherent with
the dump beam, and it is therefore amenable to spectral
filtering and phase contrast imagine techniques by interfering
the coherently scattered light with phase-shifted dump light.

■ CONCLUSIONS
We have discussed two distinct ways to form images with
excited fluorophores. Images formed by stimulated emission
are physically similar to simple absorption measurements, but
with a reversed sign on the direction of energy transfer
between the beam and the sample. Stimulated emission images
are best formed with lock-in methods due to the high
background from the dump beam.
The dipolar field of excited molecules also produces

nondirectional emission. In the absence of a dump beam, the
dipolar emission is regular fluorescence. A dump beam can
convert some of that dipolar emission into coherent excited-
state Rayleigh scattering. From a practical perspective, the
excited state Rayleigh scattering has the merits of coherence
and narrow spectrum, allowing tight spectral filtering to
remove broad-spectrum background light. On the other hand,
the excited state Rayleigh scattering has the same spectrum as
the dump beam, so background from dump scatter off
refractive heterogeneities in the sample may be overwhelming
and difficult to remove. As in the case of stimulated emission,
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lock-in measurements may distinguish between excited state vs
ground state scattering.
An ensemble of chromophores localized within a sub-

wavelength volume can enhance coherent isotropic emission
by constructive interference. Detection of this coherent
component would be similar to dark-field microscopy of
nonfluorescent objects such as gold nanoparticles, where the
scattering is theoretically unbounded and allows interfero-
metric measurements.25

Finally, the change in Rayleigh scattering between ground
and excited states can also be understood as a change in
refractive index, which for sufficiently diluted samples of
fluorescent molecules in a dielectric media, takes the form of
Δn = NΔα/2ϵ0, where N is the number of molecules and Δα is
the change in polarizability related to the ground and excited
states.

■ APPENDIX A. VECTOR SPHERICAL FUNCTIONS
AND DIPOLE SCATTERING

Here we show that the total power added to or removed from
the incident beam (i.e., the integral of eq 4 over a spherical
surface) depends only on Ei(0) for any Ei(r). Further, an
expansion of Ei(r) in the vector spherical function (VSF) basis
shows that a single term in that expansion is completely
responsible for the integral of Scross (eq 5) over a spherical
surface, and the interference of the dipole field with each other
term in the expansion integrates to zero.
The VSF’s are three-component spherical solutions to

Maxwell’s equations in Helmholtz form, labeled by two
angular momentum numbers l and m, and wavevector k =
2π/λ: Nklm(r) and Mklm(r). A pair of transverse E and B fields
centered on ω = ck can be written as the real part of a sum over
VSFs

∑= + ω−t E EE r N r M r( , ) ( ( ) ( ))e
lm

lm klm lm klm
i t1 2

(19)

∑= − + ω−t
i

c
E EB r M r N r( , ) ( ( ) ( ))e

lm
lm klm lm klm

i t1 2

(20)

where 1Elm(t′) and 2Elm(t′) are expansion coefficients, which
are assumed to be slowly varying functions of t′. There are
source-free VSF solutions, Nklm(r) and Mklm(r), relevant for
describing Ei and sourced solutions, ±Nklm(r) and ±Mklm(r),
appropriate for a field with a point source (+) or sink (−), such
as Ed. The source-free and source/sink solutions are related by
Nklm(r) = (+Nklm(r) +

−Nklm(r))/2.
The VSFs satisfy a number of orthogonality relations: local

orthogonality and curl relations

· =N r M r( ) ( ) 0klm klm (21)

∇ × = kN r M r( ) ( )klm klm (22)

∇ × = kM r N r( ) ( )klm klm (23)

and orthogonality of dot- and cross-products integrated over
solid angle in the far field, r → ∞,

∫ δ δ· * Ω =′ ′ ′ ′AN r N r( ) ( ) dkl m klm N l l m m (24)

∫ δ δ· * Ω =′ ′ ′ ′AM r M r( ) ( ) dkl m klm M l l m m (25)

∫ δ δ× * · ̂ Ω =′ ′ ′ ′i CN r M r r( ) ( ( )) dkl m klm l l m m (26)

where it is understood that we take the real part for the
physical solution. The normalization depends on whether the
functions are source-free and/or sourced. For the source-free
case Nklm (or Mklm):

=

=

A A

kr
kr

l

kr
kr

l

C

( )

sin ( )
( )

, odd (even)

cos ( )
( )

, even (odd)

0

N M
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2

2

2
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m

oooooooo

n

oooooooo
(27)

For the case where both terms are sourced (e.g., +Nklm·
+Nkl′m′):

= = =A A C
1

(kr)N M 2 (28)

For mixed sourced/source-free cases appropriate for the cross
terms, (e.g., Nklm·

+Nkl′m′)

=A C A

kr
kr
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kr
kr

l
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sin ( )
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N M

2

2

2

2
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oooooooo

n

oooooooo (29)

The dipole components of Nklm for l = 1, m = 0 have the
limiting behavior in the near field given by

π → = ̂zN r6 ( 0)k10 (30)

π → = ̂ ·̂ ̂ − ̂+

i kr
r z r zN r6 ( 0)

3
2

1
( )

(3 ( ) )k10 3 (31)

and in the far field

π → ∞ = ̂ × ̂ × ̂kr
kr

r z rN r6 ( )
3
2

sin
( )k10 (32)

π → ∞ = ̂ × ̂ × ̂+

ikr
r z rN r6 ( )

3
2

e
( )k

ikr

10 (33)

(To simplify the discussion, we take Ed and Ei to be linearly
polarized along z.̂ However, arbitrary polarization can be
treated in a similar way by including the m = ± 1 components
of Nklm.) The source-free solutions for all other Nklm(r) with l
≠ 1 vanish in the limit r → 0, as well as all Mklm(r) for any l.
This fact has an important consequence: the dipole component
for an arbitrary Ei(r), Bi(r) is entirely and solely determined by
the value of Ei(0) at the origin.
Consider a dipole at the origin subject to an excitation field

Ei(r, t) = E0 g(r)e
−iωt, where the field at r → 0 is characterized

by E0 and g(0) = z:̂ Ei(0, t) = E0 zê
−iωt. We assume that E0

satisfies the slowly varying approximation |Ė0(t′)| ≪ ω |E0(t′)|,
but Ei(r,t) is otherwise an arbitrary solution to Maxwell’s
equations. Comparing to eq 19 and 30, g(r) = gd(r) + g⊥(r),
where π=g r N r( ) 6 ( )kd 10 and g⊥(r) is orthogonal to Nk10(r).
We define a characteristic field strength associated with the

dipole d to be Ed = ω3d/6πϵ0c
3, where for the classical

calculation d = (1/2)αE0 and in the quantum case d = dijσ̂−(t′)
= |⟨j|er|i⟩|σ̂−(t′). The dipole radiated field can be written Ed(r,
t) = Edf(r)e

−iωt where the far-field bahavior of f is
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≃ ̂ × ̂ × ̂
kr

r z rf r( )
3
2

e
( )

ikr

(34)

Comparing eq 33 and eq 34, we find π= +if r N r( ) 6 ( )k10 .
The dipole structure of f(r, t) and gd(r, t) determines the
spatial dependence of the radiated energy.
Poynting’s theorem describes the flow of energy within a

closed surface Ω containing the molecule. Within the
quasistatic, slowly varying approximation, it relates Pmol, the
rate of change of the internal energy of the molecule, to ΔS =
Stot−Si, the difference between the Poynting vector with and
without the molecule:

∫ Ω= − Δ
Ω

P S dmol (35)

where S = (1/μ0)E × B. Choosing the surface to be a sphere of
radius r, dΩ = r ̂ dΩ, the orthogonality eq 26 means that g⊥(r)
drops out of the integral in eq 35, and Pmol is independent of
Ei(r, t) other than its value at r = 0. Note that the properties of
Nklm and Mklm listed above (eqs 28 and 29) also imply that the
time-averaged far-field solid angle integral of c times the energy
density difference, cΔu = c ϵ0(Ei·Ed* + (1/2)|Ed|

2) is equal to
the solid angle integral of ΔS·r.̂ Therefore, the cycle averaged
integral Pabs = −Pmol can be written in terms of (the real part
of) cΔu

∫

∫

= Δ Ω

= ϵ *· + | | | | Ω

P c r u

c r E E Eg f f

d

1
2

d .d d

abs
2

0
2

0 d
2 2

(36)

Using the expressions for gd(r), f(r), and Ed and performing
the integrals give

ω ω= [ ] +P dE EIm d dabs 0 (37)

Note that with d(t) = de−iωt the first term in eq 37 is equal to
Pext = −Pd = −⟨Ei(0)·ḋ⟩t.

■ APPENDIX B. OPTICAL THEOREM IN THE VECTOR
SPHERICAL FUNCTION BASIS

The optical theorem relates the imaginary part of the forward
scattering amplitude to the total cross section of the scatterer,
and is equivalent to eq 7 in the linear polarizable regime. The
relation is required by energy conservation, and for a dipole
scatterer, it relates the integral of the interference term eq 5 to
the energy dissipated by the dipole. It is usually derived using
incident plane wave excitation within the paraxial limit by
integrating Scross over the surface of a far screen.13 The
relationship between the local dipole response and the far field
scattering distribution should be independent of the spatial
form of Ei.
For example, if one assumes an incident Gaussian beam

focused on the position of the dipole, where both Ei and Ed are
radial waves in the far field ∝ eikr/r, integration of eq 5 over a
spherical surface should equal the energy dissipated. It turns
out that the Gouy phase is required in order for Ei(r = 0) to
have the correct phase relation with d to conserve energy. In
general, the phase of Ei(r = 0) must be related to the far-field
radiation pattern.

■ APPENDIX C. FOUR LEVEL QUANTUM MODEL
To understand qualitatively the impact of spontaneous
emission on fluorophore scattering, we simplify the description

of our fluorophore to a four level model, as shown in Figure 4.
Although simple, this model captures many of the features

discussed in the main text. A pump beam with Rabi frequency
ℏΩp = d·Ep excites the dipole to an excited state |4⟩, which
decays rapidly (at rate Γ′) to a different excited state |1⟩ with
much longer lifetime τ = γ−1, where γ = ω3 d12

2/3πϵ0 ℏc
3 is the

radiative decay rate of |1⟩. A dump beam, with Rabi frequency
ℏΩi = d·Ei and detuning Δ, drives the dipole to a lower state |
2⟩, which quickly decays nonradiatively back to the ground
state |3⟩ at rate Γ. The radiation of interest arises from the |1⟩
→ |2⟩ transition. The non radiative relaxation rates are taken to
be much larger than the radiative rate, Γ, Γ′ ≃ 1000 γ, typical
of fluorophores.
Solving for the radiated field of a single driven quantum

dipole in the semiclassical approximation involves first solving
the master equation for the dynamics of the dipole, given the
incident field. (We work in the Heisenberg picture, where the
operators are time dependent.) We note that since the system
is strongly dissipative, the populations can be described by
incoherent, classical rate equations.26 The Rayleigh scattering,
however, is a coherent process and depends on the coherence
between states |1⟩ and |2⟩.
Given the solution for d̂(t), the radiated field from a

transition between states |j⟩ → |i⟩ is given by eq 17.
Expectation values of operators ⟨Ô(t)⟩ = tr[ρ̂Ô(t)] = tr[ρ̂(t)
Ô(0)] are determined using solutions ρ̂(t) to the master
equation

∑ρ ρ
γ

ρ ρ ρ∂ ̂ = −
ℏ

[ ̂] − ̂ + ̂ − ̂† † †i
H C C C C C C,

2
( 2 )t

i

i
i i i i i i

(38)

Here, H is the semiclassical Hamiltonian governing the system,
and Ci are the dissipative jump operators with associated decay
rates γi.
For the four-level model considered here,

= Δ| ⟩⟨ | +
Ω

| ⟩⟨ | +

+ Δ′| ⟩⟨ | +
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(39)

where Δ and Δ′ are the detunings from the excited and
vibrationally excited ground state respectively, Ω are the Rabi
frequencies and the jump operators/decay rates are given by

Figure 4. Four-level system energy diagram as simple model of a
pumped fluorophore.
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γ= | ⟩⟨ | = Γ′C 1 41 1 (40)

γ= | ⟩⟨ | = ΓC 3 22 2 (41)

γ γ= | ⟩⟨ | =C 2 13 3 (42)

We will consider resonant pumping, Δ′ = 0 for the remainder
of this section.
The far-field radiated power due to the stimulated emission

and isotropic dipole terms, the quantum version of eq 37, are
given by

ω ρ= ℏ [Ω* ]P Im istim 12 (43)

ωγρ= ℏπP4 11 (44)

where ρi j are the elements of the density matrix for the four
level system, determined by solving the master equation
governing the system. In the limit Γ, Γ′ ≫ Ωp, Ωi, γ, the steady
state solutions for ρij give

ω
γ

= ℏ Γ
Γ

Γ + Γ +
P d

p

p d
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(45)

ωγ
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Γ

Γ + Γ +πP p

p d
4

(46)

where the effective pump and dump rates are
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(47)

The ratio of total 4π scattering to stimulated emission is P4π/
Pstim = γ/Γd, which vanishes in the limit of strong dumping, Γd
→ ∞.
The part of the total P4π that is coherent with the dump

field11 (i.e., the excited state Rayleigh scattering described in
the classical discussion above) is

ωγ ρ

ωγ
γ

= ℏ | |

= ℏ
Γ
Γ

Γ
Γ + Γ +

P

.

R

d p

p d

12
2

2i

k
jjjjjj

y

{
zzzzzz

(48)

For typical strong driving parameters Γ ≫ Γd ≫ γ, the fraction
of the total scattering that is coherent Rayleigh scattering is
small, PR/P4 π ≤ Γd/Γ, and is yet smaller than the power in the
stimulated interference term, PR/Pstim ≤ γ/Γ. The only way to
increase PR to near the maximum allowed ℏω γ is to dump at a
rate approaching the fast relaxation time scale Γ.
In the strongly pumped, fully inverted limit, Γp ≫ Γd and ρ11

≃ 1, P4 π is fixed to its maximum value, P4π = ℏω γ,
independent of the dump rate Γd. Increasing the dump field
does not increase the dipole radiated power P4π. In fact,
outside of the strongly pumped limit, the only effect that the
dump field has on P4π is through the lowering of the
equilibrium excited state population ρ11, and P4π actually
decreases with increasing Γd.
In the weakly dumped, linear excitation regime, the coherent

part of the |1⟩→ |2⟩ dipole response to the incoming field Ei
can be described by a polarizability, ⟨d(t)⟩ = d12ρ12 = α Ei/2.

Writing the electric field magnitude Ei in terms of d12, Ωi and γ
as d12 Ωi/γ = (3ϵ0λ

3/8 π2)Ei gives the explicit expression for
αinv in the fully inverted limit:
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Using eq 7 and eq 11, we confirm that σR/σstim = γ/Γ ≪ 1.
As a side note, comparing to the polarizability of a

noninverted 2-level system with the same dipole matrix
element d12 and a nonradiative relaxation rate Γ ≫ γ,

α
λ

π
γ=

ϵ
Γ

Δ Γ +
+ Δ Γ

i3
4

2 /
1 4 /2lev

0
3

2 2 2 (50)

the inverted polarizability has opposite sign and equal
magnitude.
This 4-level model ignores contributions to the polarizability

from additional excited levels, which can in principle provide
larger scattering than noninverted, ground state systems.27
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