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Abstract

Electrical potential differences across membranes play important roles throughout biology, par-

ticularly in the brain, where propagating electrical waves called action potentials and smaller sub-

threshold perturbations carry information within neurons. These electrical signals can be measured

at tissue-scale resolution by external electrodes or at a higher resolution by electrodes inserted into

the brain. For the highest resolution measurements that avoid many of the problems associated with

electrode insertion into the brain, the use of dyes or proteins that transduce the electrical signal into

an optical readout is a rapidly maturing technique. While voltage imaging has already enabled sig-

nificant scientific advances, I address in this dissertation several barriers that have stood in the way of

broader use of voltage imaging.

First, I worked to overcome the loss of voltage sensitivity under two-photon imaging conditions

hitherto seen in microbial rhodopsin voltage indicators. This class of genetically encoded voltage

indicators (GEVIs) provides superior response kinetics under one-photon conditions but loses sen-

sitivity under two-photon conditions. I experimentally characterized the photocycle of the Förster

resonance energy transfer (FRET)-opsin GEVIs, Voltron1 and Voltron2, and used the results of

these experiments to rationally design two-photon imaging conditions that restored voltage sensitiv-

ity. I demonstrated this technique for two-photon voltage imaging with Voltron2 in barrel cortex of

a live mouse. These results open the door to high-speed two-photon voltage imaging of FRET-opsin
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GEVIs in vivo and provide insight into the reporters’ photocycle that is useful both for robust one-

photon imaging and for future development of two-photon-optimized rhodopsin-based GEVIs.

Second, I bring together experimental and theoretical work to provide a set of well-characterized

upper bounds to two-photon voltage imaging performance in vivo. While aspects of this have previ-

ously been addressed, there has not been a single work addressing these various limits with a specific

focus on two-photon voltage imaging. As voltage imaging operates under different constraints than

other more familiar types of functional imaging, this treatment is necessary to set realistic expecta-

tions, delineate the most productive avenues for optimization, and provide a common theoretical

groundwork for comparing voltage imaging performance. Among other conclusions, we found that

current technologies are limited to high quality imaging of <12 neurons under standard conditions

at depths greater than 300μm in vivo.

Third, I present Luminos, an open-source MATLAB-based software package for highly syn-

chronized control of high-speed microscopes. The distinct constraints of voltage imaging place

distinct constraints on the required instrumentation. Existing general-purpose control libraries

are inadequate for the speed and synchronization required for voltage imaging experiments involv-

ing complex electrical and optical stimulation and recording. Rather than produce control code

narrowly-tailored to a specific microscope or experiment, our lab embarked on a project to develop

a modular customizable control suite that is now used for data acquisition on all of the seven cus-

tommicroscopes in our lab and has been publicly released with the aim of making voltage imaging

instrumentation more accessible to the broader field.

Fourth, I performed a theoretical and experimental treatment of the calibration of intensity-

based voltage indicators to an absolute voltage scale. Because of unknown expression levels, back-

ground, optical efficiency, and other factors, intensity-based imaging of a single reporter provides

only relative signals that cannot be calibrated either to an external scale or across significant spatial or

temporal extent. I mathematically and experimentally analyzed the feasibility of calibrating voltage
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responses with a second independently expressed voltage indicator and found that a combination

of a linear indicator with a nonlinear indicator tailored to the voltage range of interest can provide a

resilient calibration to an absolute scale. Likely due to a publication bias towards reporting more lin-

ear indicators, high-performance nonlinear indicators are not currently available, but this theoretical

treatment motivates their development and dissemination.

Finally, I discuss the technical outlook for voltage imaging in light of this work. By characterizing

the performance limits of two-photon voltage imaging, uncovering the mechanism of two-photon

voltage insensitivity in opsin-GEVIs, and proposing a method for dual indicator absolute voltage

imaging, I provide insight into the most productive directions for future voltage indicator develop-

ment. Both the demonstration of two-photon voltage imaging with Voltron2 and the release of the

Luminos software are important steps towards making voltage imaging more broadly useful and ac-

cessible. Important work remains in further optimizing opsin-GEVIs for two-photon imaging and

in making voltage imaging hardware more accessible.
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1
Introduction

Just as the diffusion and transport of small molecules and atoms can communicate information

within and between cells, the propagation of electric potential differences along membranes is

also a critical component of biological information flow. In neurons, electrical action potentials1

and smaller sub-threshold voltage perturbations2 are the primary high-speed carriers of informa-

tion within the cell; electrical signals control and synchronize the action of muscles throughout the

body3; and there is increasing evidence that membrane potential plays an important role both in co-
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ordinating eukaryotic cell development and differentiation4 and in microbiology5. These biological

voltages are of interest to neuroscientists, physiologists, developmental biologists, and microbiolo-

gists.

The measurement of biological voltages requires fundamentally different techniques than the

more commonmeasurements of small molecules. At low resolution, the electric and magnetic fields

created by large numbers of neurons firing synchronous action potentials can be detected outside

the skull by electro-encephalography6 and magneto-encephalography7. At higher resolution, micro-

electrodes8,9 can be inserted into the brain to measure the extracellular electric fields that result

when current rushes into a neuron during an action potential, though these measurements face

difficulties in unmixing the signals from adjacent cells10. In order to measure the full spectrum of

electrical activity within a cell, including sub-threshold perturbations that do not result in an action

potential, electrodes that provide internal access to the cell must be used. Whole-cell patch clamp-

ing11, the gold standard for electrophysiological measurements, is severely throughput-limited,

while silicon-based intracellular nano-electrode arrays suitable for in vivo use are still the subject of

active research.12–14 All techniques that rely on insertion of solid electrodes face challenges of tissue

damage upon insertion, motion-induced damage, and immune response to the electrodes.8

The challenges of electrode-based recording, in contrast to the relative ease of optical imaging

of ions and small molecules, have inspired the development of transducers that convert biological

membrane voltage into an optical signal. Optical imaging is not without its own set of limitations.

Imaging depth is limited in scattering tissue, imaging time is often limited by photobleaching and

phototoxicity, introducing optical voltage reporters requires either genetic or chemical modification

of the sample, imaging requires bulky and expensive equipment, and imaging techniques often pro-

duce large volumes of data that present storage and analysis challenges. Yet optical voltage sensors

provide a set of capabilities that are difficult or impossible to achieve with electrode-based tech-

niques and therefore will increasingly be a powerful complement to traditional electrophysiology.
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Alone, and in combination with channelrhodopsins15, which transduce optical signals into

membrane voltage perturbations, these optical voltage sensors have already enabled significant

advances in neuroscience16–21, developmental biology22, cancer biology23, and pharmacological

screening24, and form the basis for a rapidly expanding field25,26. Nevertheless, though the field of

voltage imaging is no longer in its infancy, it is by no means mature. The aim of this dissertation is

to develop methods and tools that will make voltage imaging more accessible to the broader scien-

tific community.

1.1 A classification of optical voltage sensors

The two main classes of optical voltage reporters are voltage sensitive dyes and genetically encoded

voltage indicators (GEVIs). Voltage sensitive dyes have very good photophysical properties and are

simple to use but, without some genetically-targeted component, label all cells to which they are

exposed, leading to excessive fluorescent background27 and preventing targeting towards a spe-

cific neuronal subtype in the brain28. Voltage sensitive dyes can also be somewhat toxic and dif-

ficult to deliver past the blood-brain barrier into the brain.29 Genetically encoded voltage indica-

tors30–34 allow precise genetic targeting of expression and are amenable to sparse expression via

adeno-associated viral delivery35, increasing their signal to background ratio. These properties are

particularly advantageous in the dense and highly complex tissue of the brain.

Modern GEVIs can be divided into two classes based on the nature of their voltage sensitive do-

main. The class of Voltage-sensing domain (VSD) GEVIs transduce a voltage-responsive shift in

a positively charged transmembrane helix into a fluorescent readout, through environmentally-

sensitive fluorescence36, Förster resonance energy transfer (FRET)37, or disruption of the chro-

mophore of a circularly permuted fluorescent protein38. This class has historically been limited by

the slow kinetics of the mechanical signal transduction, but recently developed members, such as
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JEDI-2P38, show kinetics almost as fast as the second class. In addition, VSD-based GEVIs have his-

torically been spectrally limited by the available fluorescent proteins, restricting their usage in the

biologically advantageous red end of the visible spectrum, where scattering and hemoglobin absorp-

tion are smaller. Red VSD-GEVI imaging can be performed with a recently demonstrated chemi-

genetic VSD-GEVI, HASAP39, which uses an environmentally sensitive dye bound to a Voltage-

sensing domain, but this indicator requires the use of dyes with poor bioavailability in vivo.

Rhodopsin-based GEVIs are based on retinal-containing microbial rhodopsins, natural light-

driven proton pumps whose absorption spectrum shifts based on the protonation of the retinal

Schiff base.40 Amutation of an aspartate residue to asparagine blocks the proton pumping pathway,

allowing the rhodopsin to function as a pure sensor.41 Early opsin GEVIs used intrinsic retinal fluo-

rescence as the readout, but were limited by the low fluorescence quantum yield. The development

of electrochromic FRET-opsin GEVIs, in which the voltage-sensitive retinal absorption shift causes

variable quenching of a FRET donor, allowed voltage sensing with the brightness of common fluo-

rescent proteins and the speed of the voltage sensitive opsin42. A subset of these FRET-opsin GEVIs

are the chemigenetic indicators, such as the Voltron family43,44, which provide even greater bright-

ness and photostability by using a synthetic dye bound to a bio-orthogonal tag as the FRET donor.

Some of these dyes can cross the blood-brain barrier, allowing for easy delivery via retro-orbital injec-

tion. These chemigenetic FRET-opsin GEVIs are the current state-of-the-art, allowing for subcellu-

lar neural recording45,46 and promising simultaneous high-resolution recording from hundreds of

neurons on the surface of live mouse brain.

1.2 The state-of-the-art in calcium imaging

To fully understand the promise and challenges of biological voltage imaging, it is useful to con-

sider the current state-of-the-art in calcium (Ca2+) imaging (see Grienberger et al.47 for a recent
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review of the field). Intracellular Ca2+ concentrations are typically very low but rise sharply in re-

sponse to opening of Ca2+-conductive channels, with many downstream effects including the re-

lease of neurotransmitters at the neuronal synapse, transcriptional regulation, and modulation of

ion channels.48,49 Like voltage imaging, Ca2+ imaging is a functional optical imaging technique

used to study neuronal information processing, muscle activity, and developmental biology. There

are several important differences between voltage imaging and Ca2+ imaging, whose implications for

voltage imaging will be the subject of chapter 3, but the path by which the Ca2+ imaging techniques

have become one of the dominant techniques in experimental neuroscience offers valuable lessons

to the field of voltage imaging.

Like voltage, Ca2+ concentrations do not provide a direct optical readout and therefore require

transduction of the biological feature to an optical response. As with voltage imaging, Ca2+ imaging

began with synthetic small-molecule dyes,50,51 then shifted towards genetically-encoded calcium in-

dicators52,53 (GECIs) once appropriate calcium-binding and fluorescent proteins became available.

Any optical imaging technique, Ca2+ and voltage imaging included, is limited by light scatter and

absorption to imaging only superficial layers in the brain54. The development of two-photon (2P)

laser scanning microscopy55 immediately suggested the use of this novel technique to significantly

extend the depths at which functional Ca2+ imaging could be performed. A two-photon micro-

scope produces very high instantaneous intensities of near-infrared pulsed laser light in order to

produce simultaneous absorption of two photons by the fluorophore, exciting the fluorophore by

approximately twice the energy of a single photon. This both provides intrinsic optical sectioning,

because fluorescence is only excited in a very small focal spot, and allows use of near-IR excitation

light, which both scatters less and is absorbed less than visible light in brain tissue56,57. Because of

these advantages, two-photon imaging of genetically-encoded calcium indicators is currently one of

the most broadly used techniques for studying brain activity in vivo at cellular and broader regional

resolution.47
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The maturation of Ca2+ imaging into a widespread and accessible technique has been enabled

not only by significant scientific discoveries but also by development of widely available and ro-

bust hardware and software platforms for functional calcium imaging. While early application of

2P Ca2+ imaging58 required significant customization of optics, the control system, and the anal-

ysis pipeline, a modern neuroscientist can purchase a complete microscope system designed for

Ca2+ imaging from any of several vendors, and this microscope can be controlled either by vendor-

supplied proprietary software or by a robust open-source microscope control library such as Scan-

Image59.

1.3 Current challenges towidespread adoption of voltage imaging

The ability to measure membrane potentials at high spatial and temporal resolution from large pop-

ulations of cells has been a dream of neuroscience for decades. Optical imaging of GEVIs has the

potential to make this dream a reality. Yet there are currently three main barriers to achieving this

full potential, which I will address in this dissertation.

Two-photon imaging offers the same advantages to voltage imaging as it offers to Ca2+ imag-

ing. The increased depth-penetration would allow imaging of electrical activity through the deeper

layers of the rodent cortex, while the optical sectioning capabilities would allow discrimination of

signals from different subcellular compartments including the networks of thin dendrites that inte-

grate inputs into each neuron. For reasons that were not well understood, however, the microbial

rhodopsin GEVIs that offer the best kinetics for neural recording lose voltage sensitivity under stan-

dard two-photon imaging conditions.30,60 Two-photon voltage imaging has therefore been limited

to voltage sensitive dyes and VSD-GEVIs, which smooth and distort fast neural activity due to their

slower kinetics. One possible solution would be to abandon the opsin-GEVIs for 2P voltage imag-

ing, focusing on improving the kinetics of VSD-GEVIs. In fact, recently developed VSD-GEVIs,
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like JEDI-2P38, are approaching the speed of opsin-GEVIs. In chapter 2 of this dissertation, I pur-

sue the second possibility—discovering the mechanism of opsin-GEVI loss of sensitivity under 2P

conditions in order to enable 2P imaging from existing opsin-GEVIs and inform future rational

development of 2P-optimized opsin-GEVIs.

The second barrier results from the important differences between Ca2+ imaging and voltage

imaging. Due to the membrane localization of voltage indicators, the fast dynamics of neural elec-

trical signals, and the small fractional fluorescence changes to be measured, voltage imaging requires

significantly more advanced instrumentation, both in hardware and in software, than does Ca2+

imaging. I discuss the implications of these differences for the upper-bound performance of 2P

voltage imaging in chapter 3 of this dissertation, and then in chapter 4 discuss our design and im-

plementation of an open-source software package for customizable high-speed synchronized optical

recordings, designed specifically to provide capabilities that are necessary for cutting-edge voltage

imaging experiments but not provided by existing control libraries.

Finally, while the readout of uncalibrated relative voltage changes is sufficient for detection of

action potentials, there are applications for which a readout calibrated to absolute voltage levels is

necessary. These range from visualizing slow shifts in resting potential during tissue development to

comparing fast voltage response levels on an absolute scale among different parts of the same cell or

network. For slow signals, fluorescence lifetime imaging (FLIM) can provide a calibrated absolute

readout60, but FLIM faces fundamental obstacles to imaging at the near-kilohertz rates required to

track neural spiking61,62. Chapter 5 presents a theoretical demonstration of how two appropriately

chosen one-photon-excitable voltage indicators can provide absolute calibration of voltage imaging.

Unfortunately, the high-sensitivity, highly nonlinear sensors required for this technique are not cur-

rently available, but this theoretical treatment may motivate their development and dissemination.

The same technique could be used to provide calibration for Ca2+ and other functional imaging

techniques.
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This work brings forward the field of voltage imaging by rationally discovering the means of

regaining 2P voltage sensitivity in opsin-GEVIs, defining the limits of 2P voltage imaging perfor-

mance, providing a powerful software library for voltage imaging control, and proposing a new

technique for calibration of optical voltage recordings. In chapter 6, I discuss the technical outlook

for the field in light of this work. Within the limitations laid out in chapter 3, there is much room

for further development of the technique. Both the experimental demonstration of 2P voltage sen-

sitivity in an opsin-GEVI and the theoretical treatment of absolute voltage imaging provide insight

into the most productive directions for future voltage indicator development. One critical area that

this work does not address is the development of robust and accessible hardware for voltage imaging.

While much effort is being directed towards advancing voltage imaging instrumentation38,63–71,

the field has now reached the stage at which effort should be directed towards making these voltage

imaging hardware platforms more broadly usable and available.
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Photophysics-informed two-photon voltage

imaging using FRET-opsin voltage

indicators

2.1 Abstract

Microbial rhodopsin-derived genetically encoded voltage indicators (GEVIs) are powerful tools

for mapping bioelectrical dynamics in cell culture and in live animals. Förster resonance energy

transfer (FRET)-opsin GEVIs use voltage-dependent changes in opsin absorption to modulate the

fluorescence of an attached fluorophore, achieving high brightness, speed, and voltage sensitivity.

However, the voltage sensitivity of most FRET-opsin GEVIs has been reported to decrease or van-

ish under two-photon (2P) excitation. Here we investigated the photophysics of the FRET-opsin

GEVIs Voltron1 and 2. We found that the voltage sensitivity came from a photocycle intermediate,

not from the opsin ground state. The voltage sensitivities of both GEVIs were nonlinear functions

of illumination intensity; for Voltron1, the sensitivity reversed sign under low-intensity illumina-

tion. Using photocycle-optimized 2P illumination protocols, we demonstrate 2P voltage imaging

with Voltron2 in barrel cortex of a live mouse. These results open the door to high-speed 2P voltage

imaging of FRET-opsin GEVIs in vivo.
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2.2 Introduction

Genetically encoded voltage indicators (GEVIs) are a powerful class of fluorescent probes for map-

ping bioelectrical signals.72 These tools have been used in multiple species16,40,44,73–75 and at levels

of biological organization from sub-cellular45,46,76 to organ-wide22,77,78. Microbial rhodopsin-

based GEVIs have fast (sub-millisecond) responses to voltage steps, and good voltage sensitivity.41,79

The first opsin-based GEVIs relied on the near infrared fluorescence of the retinal cofactor, but

this signal was very dim.40,41,80 In Förster resonance energy transfer (FRET)-opsin GEVIs, voltage-

dependent changes in the opsin absorption spectrummodulate the efficiency of FRET from an

attached fluorophore, leading to modulation of the fluorophore fluorescence (Fig. 2.1a).42,81 This

approach has been demonstrated with fusions of fluorescent proteins to microbial rhodopsins,18,75

and with fusions of the HaloTag receptor, which can be covalently loaded with a small-molecule

organic dye.43,44 FRET-opsin GEVIs are fast, bright, and sensitive42–44,82,83.

A key challenge in voltage imaging is to resolve signals within light-scattering tissues, such as the

brain. Most applications of voltage imaging to-date have used one-photon (1P) excitation. While

structured illumination, far-red excitation, and use of photo-activatable GEVIs84 can partially re-

duce the background from scattered light, 1P voltage imaging is still limited to imaging the top

∼250 μm of brain tissue. Two-photon (2P) excitation has been transformative for calcium imag-

ing in vivo, so there has been substantial interest in developing 2P voltage imaging systems.38,64 The

FRET-opsin GEVIs would be attractive targets for 2P voltage imaging, but, for reasons that have

remained mysterious, most FRET-opsin GEVIs show little or no voltage sensitivity under typical

2P illumination conditions, even when the fluorescence count-rate is high enough that voltage-

induced fluorescence changes should be detectable.30,60 Furthermore, these same samples can return

to showing voltage sensitivity under 1P illumination after 2P illumination.60 These observations led

us to explore the photophysical basis of voltage sensitivity in FRET-opsin GEVIs.
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Figure 2.1: a) A simple model of a FRET‐opsin GEVI. A fluorescent FRET donor is optically excited and can relax either
by fluorescence or by FRET to the retinal chromophore. Voltage‐dependent shifts in the retinal absorption spectrum
modulate the fluorescence of the donor. b) The light used to excite the FRET donor may also excite the retinal directly,
driving photo‐transitions in the opsin and changing the voltage‐sensing properties of the GEVI. c) Fluorescence image of
a HEK‐293T cell expressing Voltron2608 and subject to voltage clamp. d,e) Voltage step responses from cells expressing
Voltron1608 at low (1 mW/mm2) and high (50 mW/mm2) illumination intensities, λ = 594 nm. Transient and plateau
phases of the response are indicated. At low intensity, steady state fluorescence responses showed a non‐monotonic
dependence on membrane voltage. f,g) Same as (d,e) for Voltron2608, with the same ΔF/F vertical scale. h‐k) Plots of
steady‐state ΔF/F vs. V for (h) Voltron1608, (i) Voltron2608, (j) Voltron1549 and (k) Voltron2549. Each curve is plotted for
dim (dark colors) and bright (light colors) illumination. For all reporter combinations, both the slope and the shape of the
curve were sensitive to illumination intensity. Error bars represent s.e.m. from 3‐6 cells.
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In the simplest model of a FRET-opsin GEVI (Fig. 2.1a), a voltage-insensitive FRET donor is op-

tically excited. The opsin FRET acceptor sits in a voltage-sensitive equilibrium between two states,

one of which quenches the donor more efficiently than the other. This simple model produces

two important predictions. First, the fractional response of the donor fluorescence to voltage (i.e.

ΔF/F vs. V) should be a function only of voltage and not of any illumination parameters. Second,

any excitation method (e.g., 1P or 2P) that produces the same donor excited state should produce

the same voltage-sensitive fluorescence signal. The documented failure of 2P voltage imaging with

FRET-opsin GEVIs suggests that this simple picture is inadequate.

The light used to excite the FRET donor can also interact with the opsin acceptor directly (Fig.

2.1b). Microbial rhodopsins have complex photocycles, with at least seven spectroscopically distin-

guishable states, and a variety of light- and voltage-modulated transitions.85–90 Indeed, in wild-type

Archaerhodopsin 3, voltage-sensitive retinal fluorescence comes from a photocycle intermediate

termed the “Q state”, and exciting this fluorescence requires sequential absorption of three pho-

tons.88 The engineering of QuasAr1, QuasAr2 and the Archon variants caused the voltage sensitiv-

ity to appear as a 1-photon process, but this signal still arises from a complex photocycle involving

multiple absorbing states90–92.

The complexity of opsin photocycles has been harnessed to create light-gated voltage integra-

tors,93 light-gated voltage sample-and-hold motifs,93 reporters of absolute voltage,94 and photo-

activated voltage indicators.84 Thus we hypothesized that the voltage-sensing properties of FRET-

opsin GEVIs might depend in a complex way on the intensity, wavelength(s), and time-course of

illumination; and that an understanding of these dependencies might point to illumination proto-

cols which would enable 2P voltage imaging.
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2.3 Results

We expressed Voltron143 or Voltron244 in HEK-293T cells and labeled the samples with HaloTag

ligand dye JF608 (Methods). We selected this dye because it has been useful in all-optical electro-

physiology experiments with Voltron1 and 2.45,46 We then used whole-cell voltage clamp to vary the

membrane voltage and we recorded the fluorescence under continuous 594 nm 1P illumination at

different intensities (Fig. 2.1c).

We first applied a series of voltage steps from a holding potential of -70 mV to voltages between

-90 mV and +50 mV (Fig. 2.1d-g). At high illumination intensity (50 mW/mm2), both GEVIs

showed an approximately linear and negative-going dependence of steady-state fluorescence on

membrane voltage, with slopes ΔF/F = -0.054 ± 0.007 per 100 mV (Voltron1, n = 4 cells) and ΔF/F

= -0.11 ± 0.02 per 100 mV (Voltron2, n = 5 cells), where ΔF was measured relative to F at V = -

70 mV (Fig. 2.1h, i). For depolarizations to > 0 mV, Voltron1 showed an initial transient fluores-

cence peak (Fig. 2.1e), but Voltron2 did not (Fig. 2.1g). These data are all consistent with prior

reports43,44.

At low illumination intensity (0.97 mW/mm2), the voltage responses of both GEVIs changed

dramatically. The initial transient fluorescence response of Voltron1 maintained its approximately

linear negative-going dependence on voltage. However, the steady-state F vs. V response of Voltron1

became non-monotonic. For small depolarizations relative to -70 mV, the fluorescence decreased, as

at high intensity. But for depolarizations to > -20 mV, the Voltron1 fluorescence increased as voltage

increased, and at voltages > +30 mV, the steady-state fluorescence was actually brighter than at V =

-70 mV (Fig. 2.1d, h).

For Voltron2 at low illumination intensity, the voltage step-response maintained its top-hat struc-

ture (Fig. 2.1f), but the overall voltage sensitivity decreased nearly twofold for small depolarizations

around -70 mV and the voltage response leveled off for voltages > -20 mV. Qualitatively similar
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intensity-dependent changes in the transient and steady-state voltage responses were observed when

the two GEVIs were loaded with JF549 and excited at 561 nm (Fig. 2.1j, k).

To quantify the influence of illumination intensity on voltage sensitivity, we performed voltage-

clamp experiments at 1P illumination intensities spanning nearly four orders of magnitude, from

0.06 mW/mm2 to 100 mW/mm2 (Fig. 2.2a,b). At each intensity, we clamped the voltage at -70 mV

and then measured the fluorescence responses to a 100 mV depolarizing step to +30 mV.We plotted

separately the initial and steady-state fluorescence responses, as marked in Fig. 2.1e (for Voltron2,

initial and steady state fluorescence were indistinguishable).

The data showed several surprising features. For an idealized GEVI, one would expect both ΔF

and F to be proportional to intensity, and their ratio (ΔF/F) to be independent of intensity. We

found that for both indicators, ΔF/F depended strongly on illumination intensity. This observa-

tion shows that statements of FRET-opsin voltage sensitivity are only meaningful if illumination

intensity is specified. For both GEVIs, the voltage sensitivity was greatest (in absolute value), and the

illumination intensity dependence leveled off, around 10-30 mW/mm2. By good fortune, this inten-

sity regime is typically used in neural recordings because it produces high enough per-cell count rates

to observe neural dynamics over shot noise. This coincidence may explain why the low-intensity

anomalous responses of these GEVIs were not previously reported.

These data also show the disparate effects of illumination intensity on different response

timescales. At low illumination intensity, Voltron1 showed the unexpected inversion of sensitivity

to 100 mV voltage steps (Fig. 2.2a). Further, at low intensity Voltron1 showed enhanced disparity

between the transient and steady-state responses to 100 mV voltage steps. While the sensitivity of

Voltron2 was in general superior to Voltron1, for illumination intensities between 1 – 10 mW/mm2,

the transient response of Voltron1 was larger than that of Voltron2. Thus, Voltron1 may outper-

form Voltron2 at spike detection under moderate illumination intensity.

We next sought to determine the kinetics with which voltage sensitivity increased under bright
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Figure 2.2: a) Fractional sensitivity (ΔF/F) of Voltron1608 as a function of illumination intensity for a voltage step from
‐70 to +30 mV. Heavy markers denote the steady‐state response, thin markers denote the initial transient response (n
= 5 cells). Horizontal error bars denote the range of illumination intensities binned into one measurement; vertical error
bars denote s.e.m. The traces in blue show representative step responses from dim, moderate, and bright illumination.
Roman numerals I and II mark the insensitive and voltage‐sensitive states, respectively (also in b,d,e). b) Same as panel
(a), but for Voltron2608. (n = 3 cells). c) Protocol for measuring dynamic GEVI responses to a change in illumination inten‐
sity. Dynamics in the “dark” were probed by very dim (0.75 mW/mm2) illumination; bright pulses (75 ms, 15 mW/mm2)
transiently populated the voltage‐sensitive stage. d) Fractional voltage sensitivity of Voltron1608 (green, right axis) was
calculated from the difference between the fluorescence at ‐70 mV (black, left axis) and at +30 mV (red, left axis). Sen‐
sitivity emerged with a time constant of 5 ms, reached a plateau during the light pulse, and then declined with a time
constant of 46 ms after the bright pulse. e) Same as (d) for Voltron2549. Sensitivity emerged with a time constant of 7
ms and declined with a time constant of 18 ms.
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illumination and decreased under dim illumination. To measure these parameters, in HEK cells

expressing either Voltron1608 or Voltron2549, we alternately clamped the voltage at -70 mV and

+30 mV, and at each voltage we applied pulses of bright light (594 nm for JF608, 561 nm for JF549;

75 ms, 15 mW/mm2) interleaved with dim light (675 ms, 0.75 mW/mm2; Fig. 2.2c). By compar-

ing the fluorescence at the two voltages during the dim-to-bright and bright-to-dim transitions, we

measured the onset and decay of voltage sensitivity (Fig. 2.2d, e). For Voltron1608, voltage sensitiv-

ity arose with a time-constant of 5 ms and decayed with a time-constant of 46 ms (Fig. 2.2d). For

Voltron2549, voltage sensitivity arose with a time-constant of 7 ms and decayed with a time-constant

of 18 ms (Fig. 2.2e).

The appearance of the “normal” (i.e. previously reported) F vs. V behavior only at high illumi-

nation intensities, along with the finite time constants for voltage sensitivity to arise in response to

a step-wise increase in illumination intensity, suggested that canonical Voltron voltage sensitivity

might involve a photocycle intermediate, not the ground state (Fig. 2.3). Sufficient 1P illumination

populates the voltage-sensitive state, which then thermally relaxes to the dark-adapted state.

2.3.1 Two-photon photophysics

We hypothesized that the previously reported poor 2P voltage sensitivity in opsin-based GEVIs60,95

might arise from failure to populate voltage-sensitive photocycle intermediates (Fig. 2.3). This hy-

pothesis is consistent with our observations that sufficient 1P illumination was required to observe

1P voltage sensitivity and with the much lower per-molecule excitation rate of 2P vs. 1P excita-

tion95.

JF549 was the first dye reported for use with Voltron43 and has a 2P excitation peak in the center

of the 1030-1080 nmmid-IR window reachable by multiple femtosecond laser technologies. We

expressed Voltron2549 in HEK cells, clamped the voltage at -70 mV, and applied a series of voltage

steps ranging from -90 mV to +50 mV.We first imaged the sample with donut-scanned 1040 nm
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Figure 2.3: Dark‐adapted Voltron2 does not show voltage‐dependent FRET. Upon absorption of at least one photon
with the proper energy (e.g. 594 nm or 1135 nm 2P), the opsin enters a voltage‐sensitive equilibrium between high and
low FRET states. The voltage sensitive equilibrium relaxes to the dark‐adapted state with a time constant τr ∼ 18 ms.
Voltage imaging requires concurrent measurement of the FRET donor fluorescence and optical pumping of the voltage‐
sensitive photocycle intermediate.

2P excitation (9.4 mW, 1 kHz scan repetition rate), and then applied the same voltage steps imme-

diately afterwards under widefield 1P excitation (26 mW/mm2, 532 nm). Under 2P illumination,

the fractional voltage sensitivity was much smaller and the step-response kinetics much slower com-

pared to 1P illumination of the same cell (Fig. 2.4a). At 9.4 mW/cell, the dye bleached with a time

constant of 3 s (Fig. 2.4a, inset). The 2P voltage sensitivity was -0.036 ± 0.015 per 100 mV (n = 6

cells, mean ± s.e.m., Fig. 2.4d,e), significantly smaller than the 1P sensitivity of 0.10 ± .02 per 100
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mV (n = 7 cells, mean ± s.e.m., Fig. 2.4e) from paired measurements on the same set of cells (p =

0.04; two-tailed t-test, one cell only had a 1P recording; Fig. 2.1e).

The 2P action spectrum for Voltron sensitization is not known, but prior work on 2P excita-

tion of bacteriorhodopsin provides some guidance. For bacteriorhodopsin, 2P excitation of the S1

first excited state transition peaks at 1140 nm, whereas 2P excitation of the S2 second excited state

transition (a symmetry-forbidden 1P transition) is a broad peak centered just under 1000 nm.96

Retinal isomerization and initiation of the photocycle require excitation to S1, so we reasoned that

2P excitation to S1 might favor voltage sensitivity while excitation to S2 might be unproductive or

even counteract sensitization. This reasoning suggested that 2P excitation around 1140 nmmight

favor population of voltage sensitive states. JF608 dye shows 2P excitation with a peak around 1135

nm,97 so we reasoned that in Voltron2608, 2P light at 1135 nmmight drive opsin sensitization and

simultaneously excite the FRET donor for voltage imaging.
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Figure 2.4 (following page): a) Comparison of Voltron2549 voltage sensitivity under 2P vs. 1P illumination. A HEK‐293T
cell expressing Voltron2549 was subjected to voltage steps from a holding potential of ‐70 mV. Fluorescence was
recorded under 2P excitation and then under 1P excitation. The fractional changes in fluorescence were smaller and
slower under 2P vs. 1P excitation. Inset shows magnified 2P fluorescence trace. Photobleaching was corrected before
calculating ΔF/F. b) Same as (a), but with Voltron2608. c) Voltage step response from the same Voltron2608‐expressing
cell shown in panel (b). d) Voltage response under 2P excitation for Voltron2549 and Voltron2608, under dim (3‐4 mW,
dark colors) and bright (9.4‐9.5 mW, light colors) illumination. Error bars s.e.m., n = 6‐12 cells. e) Comparison of re‐
sponses to 100 mV step (‐90 to +10 mV) for Voltron2549 and Voltron2608 from matched samples and measurement
conditions. Voltron2549 1P: 26 mW/mm2, 532 nm, n = 7 cells; 2P: 9.4 mW, 1040 nm, n = 6 cells. Voltron2608 1P: 6
mW/mm2, 594 nm, n = 11 cells; 2P: 9.5 mW, 1135 nm, n = 8 cells. Error bars mean ± s.e.m. 1P voltage sensitivity was
significantly greater than 2P voltage sensitivity for Voltron2549 (p = 0.04 two‐tailed t‐test), but not for Voltron2608. f‐j)
2P voltage imaging in acute brain slices co‐expressing Voltron2608 and CheRiff. f) Left: experimental protocol. Right:
(top) once a neuron was located, a 2P donut scan was targeted to the soma (500 Hz, 5.5 mW, 1135 nm.). (bottom) Flu‐
orescence image recorded on a camera with donut‐scan 2P excitation. g) Fluorescence traces (left axis, ΔF/F; right axis,
F) of from 1P (top) and 2P (bottom) epochs of a single recording. A ramp of blue light from 0 to 0.5 mW/mm2 evoked
spikes. h) Spike‐triggered average traces from (g) were normalized and overlayed, demonstrating similar response ki‐
netics for 1P and 2P recordings. i) Spike heights under matched 1P and 2P recordings were not significantly different (n
= 10 cells, paired t‐test). j) SNR vs. fluorescence (counts/cell/frame) for each recorded cell (n = 10 cells). The SNR and
fluorescence show a power‐law relationship with exponent b = 0.53 (95% confidence bounds: 0.35‐0.72, R2 = 0.68),
consistent with shot‐noise limited SNR (b = 0.5) with the same relative signal level for 1P and 2P excitation. The higher
SNR of the 1P recording can be attributed to the brighter fluorescence.
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Figure 2.4: (Continued)
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We expressed Voltron2608 in HEK cells, clamped the voltage at -70 mV, and applied voltage steps

ranging from -90 mV to +50 mV under either bright (9.5 mW) or moderate (4 mW) 2P excitation

at 1135 nm (Fig. 2.4b-e). The laser scan traced the periphery of the cell membrane at 1000 Hz. We

then repeated the voltage steps under moderate (6 mW/mm2) 1P excitation at 594 nm (Fig. 2.4b).

Under 2P excitation, Voltron2608 showed much larger voltage sensitivity than Voltron2549 (Fig.

2.4c-e), consistent with our hypothesis that long-wavelength 2P excitation was more effective at

populating the voltage-sensitive photocycle intermediate.

For both Voltron2549 and Voltron2608, the voltage sensitivity under lower (3.2 - 4 mW) 2P power

was similar to the sensitivity at 9.4 – 9.5 mW (Fig. 2.4d). This observation suggests that increasing

2P power beyond a few mW/cell would not increase the voltage sensitivity further, though the in-

crease in overall brightness at higher laser power would increase the shot noise-limited SNR. Due to

the low fluorescence signal under 2P conditions, we were not able to explore lower 2P powers.

We next explored 2P voltage imaging with Voltron2608 in mouse acute brain slices. We

co-expressed Voltron2 and CheRiff, a blue light-activated channelrhodopsin, in layer 2/3 cortical

pyramidal neurons via in utero electroporation. We prepared acute brain slices and incubated the

slices with JF608 dye. We sequentially performed 1P (594 nm, 22 mW/mm2) and 2P (1135 nm, 25

mW) imaging on the same cells while evoking neuronal spikes with dim ramping (0-0.5 mW/mm2)

488 nm illumination (Fig. 2.4g). The spike-triggered average waveforms under 1P and 2P excitation

matched closely, demonstrating that 1P and 2P recordings with Voltron2608 have the same time

resolution.

We performed the same paired 2P and 1P recording protocol on pyramidal cells from cortical

layer 2/3 and from hippocampus CA1. We varied 1P excitation power (22 - 70 mW/mm2) and 2P

power (5.5 - 15 mW), to explore the effect of brightness in the sensitivity-saturated regime. Across

10 recordings (two recordings from each of 5 cells), we found no significant difference between

2P and 1P voltage sensitivity, ΔF/F per spike (Fig. 2.4i). For each recording, we also calculated the
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SNR (ratio of spike height to baseline noise) and plotted this against the fluorescence counts per

cell per frame (Fig. 2.4j). On a log-log plot, the 2P and 1P data fell along the same line, with a slope

of 0.53 (95% confidence bounds: 0.35-0.72, R2 = 0.68). This observation is consistent with both

signals being shot-noise limited (slope = 0.5) with the same signal strength. Thus the greater SNR of

the 1P recordings was attributed almost entirely to the increased fluorescence brightness under 1P

conditions.

Finally, we tested 2P voltage imaging of Voltron2608 in vivo. We injected a viral vector for cre-

dependent bicistronic expression of Voltron2 and CheRiff into Layer 1 barrel cortex of Ndnf-Cre

mice. We performed optical stimulation and voltage imaging of layer 1 interneurons through a sur-

gically implanted window in an anesthetized mouse. We sequentially performed 1P (594 nm, 30

mW/mm2) and 2P (1135 nm, 11-20 mW) imaging on the same cells while evoking neuronal spikes

with pulses of 488 nm illumination of successively greater intensity (0.2-0.35 mW/mm2; Fig. 2.5a).

The spike-triggered average spike waveforms under 1P and 2P excitation matched closely, displaying

identical millisecond-scale spike kinetics.

We compared statistics from four recordings (one from each of four cells). The 1P voltage sensi-

tivity was better than the 2P sensitivity in three of the cells, but this did not reach statistical signifi-

cance. The decreased 2P sensitivity may have been partially the result of bleaching at the higher 2P

powers attained in these experiments. A log-log plot of SNR vs. fluorescence did not demonstrate a

linear relationship (R2 = 0.18). For both 1P and 2P recordings, the noise had substantial contribu-

tions from background fluorescence, motion artifacts, and blood flow, leading to cell-specific noise

above shot noise.
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Figure 2.5: a) Cre‐dependent Voltron2 and CheRiff were expressed by AAV injection in Layer 1 barrel cortex of Ndnf‐
Cre mice. JF608 dye was injected the day prior to the experiment, and neurons were imaged through a craniotomy under
a 2P donut scan, 1135 nm, 500 Hz. b) Fluorescence traces (left axis, detrended ΔF/F; right axis, F) of from 1P (top) and
2P (bottom) epochs of a single recording. Pulses of blue light increasing from 0.2 to 0.35 mW/mm2 evoked spikes. 1P:
30 mW/mm2 594 nm excitation; 2P: 1135 nm excitation at slowly increasing power to counteract photobleaching.
Optogenetic stimulation evoked spikes which were detectable via voltage imaging. c) Spike‐triggered average traces
from (b) were normalized and overlayed, demonstrating similar response kinetics for 1P and 2P recordings (1P: N = 49
spikes; 2P: N = 54 spikes). d) Response to a single blue pulse. e) Spike heights under matched 1P and 2P recordings
were not significantly different (n = 4 cells). f) SNR vs. fluorescence (counts/cell/frame) for each recorded cell (n = 4 cells,
slope p = 0.16 ± 0.35 95% confidence interval; R2 = 0.18). Deviation from shot noise‐limited SNR in vivo is likely due to
contributions from background fluorescence, brain motion, and blood flow.
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2.4 Discussion

The absence of 2P voltage sensitivity with FRET-opsin reporters has long been a barrier in the field

of voltage imaging. Here we show that 2P voltage imaging with FRET-opsin GEVIs is feasible if the

illumination populates the voltage-sensitive photocycle intermediates. Achieving this goal required

selecting a 2P excitation wavelength (1135 nm) that efficiently populated the intermediate state and

a dye that was efficiently excited at this wavelength while also undergoing efficient FRET with the

opsin, and applying scan patterns which revisited each molecule frequently enough to overcome

relaxation of the voltage-sensitive intermediates. These results open the door to 2P voltage imaging

in vivowith FRET-opsin GEVIs.

Our spectroscopic studies point to strategies for rational improvement of both 1P and 2P FRET-

opsin GEVIs and voltage imaging systems. For instance, there may be other dyes whose excitation

peak better matches the peak of the 2P opsin sensitization spectrum while still engaging in produc-

tive FRET with the voltage-sensitive states. Protein engineering efforts to slow the kinetics of relax-

ation of the voltage-sensitive states could also enhance voltage sensitivity. Furthermore, one might

engineer imaging systems in which 1P and 2P illumination are interleaved, with the 1P driving pop-

ulation of the voltage-sensitive states and the 2P providing the excitation for optically sectioned

imaging.

2P voltage imaging still faces difficulties as a practical tool for in vivo neural imaging. We recently

compared the power budgets of 1P and 2P excitation: to achieve useful count rates for voltage imag-

ing with a standard 80MHz source, 2P excitation requires∼104-fold greater power per cell com-

pared to 1P excitation.95 The maximum biologically safe laser power for 2P voltage imaging can

be set by either average or peak illumination intensity. The time- and space-average power into the

sample should be capped to avoid temperature rises greater than a few °C (5 °C can induce perma-

nent damage, but smaller temperature rises may alter neural firing patterns).98 The peak intensity at
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the laser focus should not exceed∼1 nJ/pulse, the saturation intensity of most fluorophores.99 At

higher intensities, nonlinear photodamage might occur.

Our brightest 2P voltage recording was obtained at a power of just under 10 mW (0.125 nJ/pulse

at 80MHz), which induced bleaching with a time constant as short as 2.5 s (with scan-to-scan varia-

tion). Increases in peak pulse energy, offset by decreases in laser repetition rate, may enable brighter

overall fluorescence signals and improvements in SNR, provided that the thermal and peak-intensity

limits are respected. We discuss the optical and molecular constraints on 2P voltage imaging in detail

in chapter 3.

Our results also have important implications for use of Voltron2 under 1P excitation. For very

long-term recordings, a natural inclination is to decrease the illumination intensity to avoid pho-

tobleaching or phototoxicity. However, our results show that this strategy may unintentionally

lead to a loss of voltage sensitivity. A better strategy would be to interleave epochs of intense (> 10

mW/mm2) illumination with epochs of darkness. Similarly, for voltage imaging of large samples

(e.g. an entire mouse heart), the excitation intensities may be low, leading to a loss of voltage sensi-

tivity. To preserve sensitivity, one should either make an array of focal spots, or apply intermittent

high-intensity illumination.

The complex photophysics of the FRET-opsin GEVIs suggest that future protein engineering

efforts should be accompanied, at a minimum, by a quantification of intensity-dependent voltage

sensitivity. An interesting avenue for future explorations would be to determine the photocycle

basis for the intensity-dependent changes in voltage sensitivity and voltage step-response waveforms

shown in Figs. 2.1 and 2.2.
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2.5 Materials andMethods

2.5.1 Genetic constructs

Voltron1 and Voltron2 plasmids were obtained from Addgene (♯119033 and ♯172909, respectively).

For lentiviral transduction, the Voltron sequence was cloned into a lentiviral backbone with a CMV

promoter using standard Gibson Assembly. Briefly, the vector was linearized by double digestion

using restriction enzymes (New England Biolabs). DNA fragments were generated by PCR amplifi-

cation and then fused with the backbones using NEBuilder HiFi DNA assembly kit (New England

Biolabs). Resulting plasmids were verified by sequencing (GeneWiz).

For experiments in neurons, we co-expressed Voltron2 with a blue-shifted channelrhodopsin,

CheRiff by a self-cleaving p2a linker. For ex vivo slice experiments, we used a previously-published

whole-cell-expressing construct45 (Addgene ♯203228). For in vivo experiments, we generated a

plasmid with soma-localized Voltron2 and soma-localized CheRiff under the hSyn promoter and

flanked by LoxP sites for Cre recombinase-dependent expression. The genes were cloned into an

adeno-associated virus (AAV) backbone using standard Gibson Assembly. AAV was produced by

UNCNeurotools using the supplied plasmids.

2.5.2 HEK cell culture

HEK293T cells were maintained in tissue culture-treated culture dishes (Corning) at 37 °C, 5%

CO2 in Dulbecco’s Modified Eagle Medium supplemented with 10% fetal bovine serum, 1%

GlutaMax-I, penicillin (100 U/mL), streptomycin (100 mg/mL). For each imaging experiment,

cells in one 35 mm dish were either transiently transfected with the construct to be imaged using

TransIT-293 lipofection reagent (Mirus Bio) or were virally transduced with a lentivirus. We saw

no difference in voltage sensitivity or photophysics between the lipofected vs. virally transduced
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HEK cells. For lipofection, the construct was diluted 1:5 with empty pUC19 vector (New England

Biolabs) and then transfected with 7.5 μL of TransIT-293 and 2.5 μg of DNA. Cells were replated

36-60 hours after transfection on glass-bottomed dishes (Cellvis, Cat. ♯D35-14-1.5-N) that were

previously coated in poly-D-lysine to aid in cell adhesion.

2.5.3 Lentiviral transduction

All the lentivirus preparations were made in house. HEK293T cells were co-transfected with the

second-generation packaging plasmid psPAX2 (Addgene ♯12260), envelope plasmid VSV-G (Ad-

dgene ♯12259) and transfer plasmids at a ratio of 9:4:14. For small batches, 5.6 μg total plasmids

for a small culture (300k cells in 35 mm dish) gave sufficient yield of lentivirus. Lentivirus was not

further concentrated. For lentiviral transduction, 100 μL of lentivirus were added to a single 35 mm

dish. After 48-60 hours, cells were either replated onto glass for imaging or split and replated on 35

mm plastic dishes for continued growth. Virally transduced cultures could be used for up to three

passages after transduction. For all experiments, imaging was performed 12-24 hours after replating

on glass.

2.5.4 Electrophysiology and Buffers

Half an hour prior to imaging, the appropriate JF-HaloTag ligand dye was added to the medium in

each dish of cells to a final concentration of 100 nM. Immediately prior to imaging, the medium was

removed, and the cells were rinsed, then covered with dye-free extracellular (XC) buffer. The XC

buffer contained 125 mMNaCl, 2.5 mMKCl, 3 mMCaCl2, 1mMMgCl2, 15 mMHEPES, 20

mM glucose, which was adjusted with NaOH to a pH of 7.3 and with sucrose to an osmolality of

305-310 mOsm, as measured by a vapor-pressure osmometer (Wescor). Filamented patch pipettes

were pulled using an automated puller (Sutter P-1000) to a tip resistance of∼6MΩ and were filled
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with an intracellular buffer (IC) containing (in mM) 6 NaCl, 130 K-aspartate, 2 MgCl2, 5 CaCl2,

11 EGTA, and 10 HEPES, with pH adjusted to 7.2 by KOH100. Whole-cell voltage clamp was

acquired using a modified syringe to manipulate pressure, following Li.100

2.5.5 Microscope and illumination control

One-photon (1P) imaging experiments were performed on a custom-built inverted microscope with

a computer-controlled patch amplifier (Axon Instruments, Multiclamp 700B). Once a whole-cell

patch was established, acquisition was controlled using customMATLAB/C++ acquisition soft-

ware (https://www.luminosmicroscopy.com/, see chapter 4). The illumination path contained a

594 nm laser (Hübner Photonics, Cobolt Mambo) and a 561 nm laser (Hübner Photonics, Cobolt

Jive). The laser outputs were modulated using a multichannel acousto-optic tunable filter (Gooch

&Housego, TF525-250-6-3-GH18A withMSD040-150 driver), and imaging was performed

through a high-NA 60x water-immersion objective (Olympus UPLSAPO60XW, 0.28 mmworking

distance, NA = 1.2) onto an sCMOS camera (Hamamatsu, ORCA-Flash 4.0). Imaging of JF549 and

JF608 was performed through a 488/561/633 nm triband dichroic (Chroma) and a 405/488/594

nm triband dichroic (Semrock), respectively. A 594 nm long-pass emission filter was used for both

dyes (Semrock, BLP01-594R-25). Electrical waveforms and measurements were transduced through

a computer-controlled data acquisition device (National Instruments, PCIe-6343). The sample was

placed on a 2-axis motorized stage (Ludl Electronic Products, MAC6000), and a 3-axis micromanip-

ulator was used for patch pipette control (Sutter, MP-285).

Two-photon (2P) imaging experiments were performed on a custom-built upright microscope

equipped with 1P and 2P illumination paths, a shared emission path to an sCMOS camera (Hama-

matsu, ORCA-Flash 4.0), and a computer-controlled patch amplifier (Axon Instruments, Axopatch

200B). An 80MHz tunable ultrafast laser (Spectra-Physics, InSight DeepSee) was modulated us-

ing an electro-optic modulator (ConOptics, 350-80-02 with 302RM driver) and directed using
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a pair of galvanometric mirrors (Cambridge Technologies 6215H with 671HP driver). 488 nm

(Coherent OBIS 488-100 LS), 532 nm (Laserglow LLS-05320PFM-00159-01), and 594 nm (Hüb-

ner Photonics Cobolt Mambo 0594-04-01-0100-500) lasers were combined and independently

modulated using a multichannel acousto-optic tunable filter (Gooch &Housego PCAOMNI-

VIS withMSD040-150 driver). The 1P lasers were patterned using a digital micromirror device

(Vialux V-7001). Imaging of HEK cells and brain slices was performed through a high-NA 25x

water-immersion objective (Olympus XLPLN25XWMP2, 2 mmworking distance, NA=1.05).

In vivo imaging was performed through a high-NA 25x water-immersion objective (Olympus

XLPLN25XSVMP2, 4 mmworking distance, NA = 1). A 785 nm long-pass dichroic (Semrock

Di03-r785-t3) separated the 2P excitation from the 1P and imaging paths. A 594 nm long-pass

dichroic (Semrock Di03-r594-t3) separated the 1P excitation light from the imaging path. Emis-

sion filters at 628/40 and 593/40 were used for imaging of JF608 and JF549, respectively. Electrical

waveforms and measurements were transduced through a computer-controlled data acquisition de-

vice (National Instruments, PCIe-6363). Galvo control and feedback waveforms were transduced

through a second computer-controlled data acquisition device (National Instruments, PCIe-6343).

The sample was placed on a motorized 2-axis stage, with focus controlled by objective displacement

and a 3-axis micromanipulator used for patch pipette control (Sutter MPC-200 controller with

MPC-78 stage andMP-285 manipulators).

Camera scaling was calibrated using a stage micrometer (Thorlabs, R1L3S2P), and illumination

powers were calibrated using a power meter (Thorlabs, PM400) with either a photodiode (Thorlabs,

S170C) or a thermal (Thorlabs, S175C) slide power sensor, for 1P and 2P, respectively.

2.5.6 Animals

All animal procedures adhered to the National Institutes of Health Guide for the care and use of

laboratory animals and were approved by the Harvard University Institutional Animal Care and
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Use Committee (IACUC).

In utero electroporation (IUE)

The IUE surgery was performed as described previously.76 Timed-pregnant female CD1mice (em-

bryonic day 15.5, E15.5; Charles River) were deeply anesthetized and maintained with 2% isoflu-

rane. The animal body temperature was maintained at 37 °C. Uterine horns were exposed and pe-

riodically rinsed with warm phosphate-buffered saline (PBS). Plasmid DNAwas diluted in PBS (2

μg/μL; 0.05% fast green), and 1 μL of the mixture was injected into the left lateral ventricle of the

embryos. Electrical pulses (40 V, 50 ms duration) targeting the hippocampus were delivered five

times at 1 Hz using tweezers electroporation electrodes (CUY650P5; Nepa Gene). Injected em-

bryos were returned to the abdominal cavity, and the surgical incision was closed with absorbable

PGCL25 sutures (Patterson).

Cranial window surgery

Surgeries were conducted on NDNF-cre XNPY-GFPmice of both sexes, following the protocol

outlined by101. The surgical procedure began by exposing the skull, followed by a 3 mm circular

craniotomy at coordinates 3.3 – 3.4 mm lateral and 1.6 caudal relative to the bregma. The cran-

iotomy was made using a dental drill. Following this, a stack of one 5 mm and two 3 mm round

cover glass (Thomas Scientific, 1217N66), pre-glued by optical glue (Norland 61), was inserted

into the opening. All subsequent experimental procedures were carried out at least one week post-

surgery, ensuring that the health of each mouse was stable.
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AAV injection

Following craniotomy, AAV virus (final titer∼4e12 GC/mL) was injected at a rate of 45 nL/min us-

ing a home-pulled micropipette (Sutter P1000 pipette puller) mounted in a microinjection pump

(World Precision Instruments Nanoliter 2010) controlled by a micro-syringe pump controller

(World Precision Instruments Micro4). The micropipette was positioned using a stereotaxic in-

strument (Sutter Instruments).

In Vivo Imaging

JF608-HaloTag ligand solution was first prepared as previously described97, and was then retro-

orbitally delivered 24 hours before the imaging session. Mice were lightly anaesthetized (0.7-1%

isoflurane) and head-fixed under the upright microscope using a titanium head plate. Eyes were

kept moist using ophthalmic eye ointment. The body temperature was continuously monitored

and maintained at 37°C using a heating pad (WPI, ATC-2000). A typical imaging session lasted 2-3

hours, after which the animals quickly recovered and were returned to their home cage.

2.5.7 Brain slice preparation

Coronal slices (300 μm) were prepared from CD1mice of either sex between 2-4 postnatal weeks.

Animals were anesthetized with isoflurane and euthanized by decapitation. The brain was then

removed and placed in ice-chilled slicing solution containing (in mM): 210 sucrose, 3 KCl, 26

NaHCO3, 1.25 NaH2PO4, 5MgCl2, 10 D-glucose, 3 sodium ascorbate, and 0.5 CaCl2 (satu-

rated with 95% O2 and 5% CO2). Acute slices were made using a Vibratome (VT1200S, Leica)

while maintained in the slicing solution. Slices were recovered at 34 °C for 10 min in the imaging

solution (artificial cerebrospinal fluid, ACSF) containing (in mM): 124 NaCl, 3 KCl, 26 NaHCO3,

1.25 NaH2PO4, 2MgCl2, 15 D-glucose, and 2 CaCl2 (saturated with 95% O2 and 5% CO2). Slices

32



were then incubated in ACSF containing JF608-HaloTag ligand102 (0.5-1 μM) for 30 min at room

temperature, and moved to a fresh ACSF for another 30 min to wash out excess dye. Slices were

maintained and recorded at room temperature, 24 °C.

2.5.8 Analysis

All analyses were performed using custom semi-automatedMATLAB code. All automated analysis

pipelines included a quality-control checkpoint at which key fits and values were manually checked.

Analysis of 1P-only experiments began with manual selection of a membrane ROI from each cell.

Analysis of experiments including 2P excitation began with automated selection of an ROI based

on the 2P fluorescent signal. In both cases, the same ROI was used for each experiment from a

given cell. Analysis proceeded by extracting a time trace of fluorescence by equal-weighted aver-

aging of photon counts over the selected ROI followed by subtraction of the mean counts from a

background region selected near the cell. The resulting one-dimensional time trace of fluorescence

was used for all subsequent analyses. This trace was smoothed with a moving mean filter of win-

dow 20 ms for display of single voltage step responses and a moving mean filter of window 10 ms

for calculation of the ΔF/F traces in Fig. 2.1l and Fig. 2.2d,e. Photobleaching was corrected using

a bi-exponential fit to each illumination epoch. This fit provided the baseline from which values of

ΔF were calculated, and which was used for normalization of ΔF/F.

Neural spike recordings were detrended by smoothing the data with a moving mean filter of

width 50 ms. This produced a smooth baseline from which ΔF/F could be calculated for the raw

fluorescence trace. Spike heights, noise level, and fluorescence levels were manually extracted from

all recordings before plotting. The logarithm of the SNR and per-cell counts were taken, and a lin-

ear fit was performed using MATLAB’s curve fitting toolbox.

Significance of paired conditions was calculated using a two-tailed paired sample t-test, and signif-

icance of unpaired data was calculated using a two-tailed two-sample t-test, both using MATLAB’s
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machine learning and statistics toolbox.
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Optical constraints on two-photon voltage

imaging

3.1 Abstract

3.1.1 Significance

Genetically encoded voltage indicators (GEVIs) are a valuable tool for studying neural circuits in

vivo, but the relative merits and limitations of one-photon (1P) vs. two-photon (2P) voltage imaging

are not well characterized.

3.1.2 Aim

We consider the optical and biophysical constraints particular to 1P and 2P voltage imaging and

compare the imaging properties of commonly used GEVIs under 1P and 2P excitation.

3.1.3 Approach

Wemeasure brightness and voltage sensitivity of voltage indicators from commonly used classes un-

der 1P and 2P illumination. We also measure the decrease in fluorescence as a function of depth in

mouse brain. We develop a simple model of the number of measurable cells as a function of reporter

properties, imaging parameters, and desired signal-to-noise ratio (SNR). We then discuss how the

performance of voltage imaging would be affected by sensor improvements and by recently intro-
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duced advanced imaging modalities.

3.1.4 Results

Compared to 1P excitation, 2P excitation requires∼104-fold more illumination power per cell to

produce similar photon count rates. For voltage imaging with JEDI-2P in mouse cortex with a tar-

get SNR of 10 (spike height:baseline shot noise), a measurement bandwidth of 1 kHz, a thermally

limited laser power of 200 mW, and an imaging depth of > 300 μm, 2P voltage imaging using an 80

MHz source can record from no more 12 cells simultaneously.

3.1.5 Conclusion

Due to the stringent photon-count requirements of voltage imaging and the modest voltage sensitiv-

ity of existing reporters, 2P voltage imaging in vivo faces a stringent tradeoff between shot noise and

tissue photodamage. 2P imaging of hundreds of neurons with high SNR at depth > 300 μmwill

require either major improvements in 2P GEVIs or qualitatively new approaches to imaging.

3.2 Introduction

A longstanding dream in neuroscience has been to record the membrane potential of hundreds

or thousands of neurons simultaneously in a behaving animal. Such measurements could reveal

functional connections, probe input-output properties of cells and of microcircuits, and help dis-

cern principles of neural computation. Recent advances in GEVIs have substantially improved

their signal-to-noise ratio (SNR), enabling recordings from dozens of cells in superficial tissue us-

ing one-photon imaging18,43,69. There have also been improvements in instrumentation68,104 and

reporters38 for 2P voltage imaging, enabling voltage imaging at depths up to 500 μm, though the

number of simultaneously recorded cells at this depth remains < 3. Most applications of voltage
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imaging in vivo have been with 1P excitation16,73,105,106, whereas for Ca2+ imaging, 2P microscopy

is the dominant approach.107 This raises the question: what are the scaling properties and relative

merits of 1P vs 2P voltage imaging in vivo? How can a researcher considering a voltage imaging ex-

periment decide which approach to use?

The physical requirements of Ca2+ imaging and voltage imaging differ substantially, so intuitions

may not transfer. For Ca2+ imaging, typical events last 100 – 500 ms and have amplitudes of ΔF/F

∼100%. Signals come from the bulk cytoplasm. For voltage imaging, action potentials last∼0.3 – 2

ms, and typically have amplitudes of ΔF/F∼ 10 - 30%, though subthreshold events can be 100-fold

smaller. Signals are localized to the cell membrane. Thus, the key challenge in voltage imaging is to

acquire adequate SNR and imaging speed in the presence of shot-noise and motion artifacts, while

maintaining tissue-safe laser powers.

Here we explore, with the support of mathematical models and data from representative volt-

age indicators, howmolecular and optical parameters affect the balance between SNR, number

of simultaneously recordable cells, and tissue damage. Many of the arguments about scaling of

noise108,109 and 2P signal56,99 are found elsewhere in the literature, but with the recent publica-

tions seeking to reach63–66,70,71,110 or transcend67,111–114 these limits, we believe a consolidation of

the arguments with a specific application to voltage imaging is warranted.

Our results support the preference for 1P over 2P imaging at shallow depths and the use of 2P

voltage imaging at depths where 1P recordings are inaccessible due to light scattering. However,

at depths beyond the 1P limit, 2P voltage imaging signals are severely constrained by thermal and

shot-noise limits. We address the potential of advanced instrumentation and analysis techniques to

improve performance beyond current limits.
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3.3 Materials andMethods

3.3.1 HEK cell culture

HEK293T cells were maintained at 37 °C, 5% CO2 in Dulbecco’s Modified Eagle Medium sup-

plemented with 10% fetal bovine serum, 1% GlutaMax-I, penicillin (100 U/mL), streptomycin

(100 mg/mL). For maintaining or expanding the cell culture, we used 35 mmTC-treated culture

dish (Corning). For each imaging experiment, cells in one 35 mm dish were transiently transfected

with the construct to be imaged using PEI in a 3:1 PEI:DNAmass ratio. For all the imaging exper-

iments, cells were replated on glass-bottomed dishes (Cellvis, D35-14-1.5-N) 36 hours after trans-

fection. Imaging was performed∼6 hours after replating. Before optical stimulation and imaging,

the medium was replaced with extracellular (XC) buffer containing 125 mMNaCl, 2.5 mMKCl, 3

mMCaCl2, 1 mMMgCl2, 15 mMHEPES, 30 mM glucose (pH 7.3). For BeRST1 experiments in

HEK cells, cells were stained with 1 μNBeRST1 for 30 min prior to 3x wash with XC buffer before

imaging.

3.3.2 Microscope and illumination control

All imaging was performed using Luminos bi-directional microscopy control software (see chap-

ter 4) on a custom-built upright microscope equipped with 1P and 2P illumination paths and a

shared emission path to an sCMOS camera (Hamamatsu, ORCA-Flash 4.0 v2). The 1P illumina-

tion path contained a 488 nm laser (Coherent OBIS), a 532 nm laser (Laserglow LLS-0532) and

a 635 nm laser (Coherent OBIS). The outputs of the 488 nm and 532 nm lasers were modulated

using a multichannel acousto-optic tunable filter (Gooch &Housego PCAOMNI VIS driven by

G&HMSD040-150). The 635 nm laser was modulated using its analog modulation input and an

external neutral density filter wheel (Thorlabs). The 488 nm and 532 nm lasers were patterned via a
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Digital Micromirror Display (Vialux V-7001 V-module). To convert illumination intensity to power

per cell, we approximated HEK cells as circles with a 10 μm diameter, e.g. an intensity of 1W/cm2

corresponded to 0.8 μWper cell.

The two-photon illumination path comprised an 80MHz tunable femtosecond laser (InSight

DeepSee, Spectra Physics), an electro-optic modulator (ConOptics 350-80-02) and two galvo mir-

rors for steering (Cambridge Technology 6215H driven by 6671HP driver). Power calibration was

performed with a Thorlabs PM400 power meter with a photodiode-based sensor (S170C) and a

thermal sensor (S175C) for 1P and 2P illumination, respectively. Electrical stimuli and measure-

ments were performed using a National Instruments 6063 PCIe DAQ. All imaging was performed

with a 25x water immersion objective (Olympus XLPLN25XWMP2, 2mmworking distance, NA

1.05). At each wavelength, the dispersion was adjusted to maximize the 2P fluorescence signal. The

wavelengths for 2P excitation of QuasAr6a and BeRST1 were chosen to drive the S0 to S2 transition

rather than the S0 to S1 transition because the S2 transition was stronger.

3.3.3 Measuring voltage-sensitive fluorescence in vitro

All imaging and electrophysiology experiments were performed in XC buffer. Concurrent whole-

cell patch clamp and fluorescence recordings were acquired on the microscope described above.

Filamented glass micropipettes were pulled to a tip resistance of 5–8MΩ and filled with internal

solution containing 125 mM potassium gluconate, 8 mMNaCl, 0.6 mMMgCl2, 0.1 mMCaCl2,

1 mM EGTA, 10 mMHEPES, 4 mMMg-ATP and 0.4 mMNa-GTP (pH 7.3), adjusted to 295

mOsm with sucrose. Whole-cell patch clamp recordings were performed with an Axopatch 200B

amplifier (Molecular Devices). Fluorescence was recorded in response to a square wave from -70 mV

to +30 mV.

41



3.3.4 In-house AAV packaging

AAV2/9 JEDI-2P vectors were packaged in house based on a published protocol.115 Briefly, 50∼

70% confluent HEK293T cells grown in Dulbecco’s Modified Eagle Medium supplemented with

5% FBS were triple transfected with pHelper, pAAV ITRexpression, and pAAVRep-Cap plasmids

using acidified (pH 4) PEI (DNA:PEI ratio 1:3) in 1∼2 T175 flasks (∼2 x 107 cells/flask). The

AAV-containing medium was harvested on Day 3, and the AAV-containing medium and cells were

harvested on Day 5. For the second harvest, AAVs were released from the cells with citrate buffer (55

mM citric acid, 55 mM sodium citrate, 800 mMNaCl, 3 mL per flask). The two harvests were then

combined and precipitated overnight with PEG/NaCl (5x, 40% PEG 8000 (w/v), 2.5 MNaCl) at

4 °C. The low-titer virus was then purified with chloroform extraction (viral suspension and chlo-

roform 1:1 (v/v)), aqueous two-phase partitioning (per 1 g of the AAV-containing supernatant, add

5 g of 20% (NH4)2SO4 solution and 1.5 g of 50% PEG 8000 solution, and iodixanol discontinuous

gradient centrifugation (15%, 25%, 40%, and 54% iodixanol gradient prepared fromOptiPrep (60%

(w/v) Iodixanol, Axis-Shield PoC AS). The purified AAV titer was determined via qPCR (SYBR

Green, primer for forward ITR: 5’-GGAACCCCTAGTGATGGAGTT-3’; primer for reverse ITR

sequence 5’- CGGCCTCAGTGAGCGA-3’).

3.3.5 In vivo imaging

All animal experiments were approved by the Institutional Animal Care and Use Committee of

Harvard University. The cranial window surgery for in vivo imaging was based on previously pub-

lished protocols73. Briefly, an adult CD1mouse was injected with 50 nL viral mix in 4 sites in the

whisker barrel cortex at 100, 200, 300, 400, and 500 μm below the tissue surface. Viral mix had

a final concentration of 5e12 vg/mL pAAV-EF1a-DIO-JEDI-2P-Kv2.1motif and 1e11 CamKII-

Cre in AAV 2/9. A cranial window and mounting plate were then installed over the injection sites.
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Two weeks after surgery and injection, a head fixed CD1mouse was imaged at 1.5% isoflurane with

the dose adjusted to maintain a stable breathing rate. The mouse was kept on a heating pad (WPI

ATC2000) to maintain stable body temperature at 37 °C and its eyes were kept moist using oph-

thalmic eye ointment. 2P imaging was performed at a wavelength of 930 nm. The mouse was im-

aged for 2 hours after which it recovered in less than 10 minutes.

Light for 1P imaging in vivowas patterned via a digital micromirror device to selectively illumi-

nate the targeted cell body, as described above.

3.4 Results

3.4.1 Shot noise constrains functional fluorescence imaging

Shot noise imposes a fundamental limit on imaging performance. A source that generates, on aver-

age,N detected photons, will have fluctuations with standard deviation
√
N. To detect a 1 ms spike

( ΔF/F∼ 10%) with an SNR of 10, requires determining fluorescence to 1% precision in 1 ms. We

adopt 1% precision in 1 ms as a reasonable standard for a high-SNR voltage recording. Due to shot

noise, this standard requires detecting at least 104 photons/ms, or 107 photons/s.

More generally, imaging an event of magnitude ΔF/F = βwith a given SNR requires determining

fluorescence to a precision of β/SNR. The photon flux (Γ) required for a measurement rate (f),

signal level (β), and SNR is:

Γ = f · (SNR
β

)2 (3.1)

If one wishes only to detect spikes in pyramidal cells, one might tolerate SNR = 3 and f = 400

Hz. A highly sensitive GEVI could give β = 0.2 for a spike.38 Under these conditions, the mini-

mum detection rate is Γ = 9×104 photons/s. In comparison, for a typical calcium imaging scenario,
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SNR = 10, β = 1 and f = 30 Hz,47 implying Γ = 3000 photons/s, 30-fold less than even low-SNR

spike detection via voltage imaging. Thus, the brief duration of voltage spikes and the low fractional

sensitivity of existing voltage indicators conspire to make voltage imaging a very photon-greedy tech-

nique.

Filtering in space or time can increase the effective value ofN at a given pixel, at the cost of lower

spatial or temporal resolution, but filtering does not change the
√
N shot noise scaling. We discuss

advanced analysis techniques below.

3.4.2 1P vs 2P excitation of commonly used voltage indicators

We compared the brightness of commonly used voltage indicators in HEK293T (HEK) cells un-

der alternating wide-field one-photon illumination and two-photon spiral illumination with an 80

MHz pulsed laser, using a shared detection path for both modalities to ensure equal photon de-

tection efficiencies (Fig. 3.1a-c; Methods). We compared: a voltage sensitive dye (BeRST1116), an

opsin-derived GEVI imaged via intrinsic retinal fluorescence (QuasAr6a117), a chemigenetic FRET-

opsin GEVI (Voltron244), and two GEVIs that couple a voltage sensitive phosphatase (VSP) to a

circularly permuted partner fluorophore (ASAP3104 and JEDI-2P38).

As expected, the fluorescence scaled linearly with 1P illumination intensity and quadratically

with 2P intensity (Fig. 3.1d). For all but one indicator, 2P illumination required at least 104-fold

greater time-averaged power per cell to achieve comparable counts to 1P illumination (Fig. 3.1e).

The ratio of 2P to 1P powers for QuasAr6a was only∼300, due to the requirement for high inten-

sity 1P illumination and selection rules which favor 2P over 1P excitation in opsins.118 Consistent

with prior reports,43 we found that chemigenetic indicators were brighter under both 1P and 2P

illumination than their purely protein-based counterparts, though our measurements did not assign

the relative contributions of expression level vs. per-molecule brightness.

The huge difference in optical power requirement between 1P and 2P (80MHz) excitation
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Figure 3.1: a) Diagram of experiment. HEK cells were sequentially illuminated with wide‐field 1P light in steps of in‐
creasing intensity, then by spiral scan 2P steps of increasing intensity. b) Example HEK cell expressing the GEVI ASAP3.
2P spiral scan pattern shown in red and analysis ROI shown in green. Scale bars 5 μm. c) Example single‐trial data for
cell expressing ASAP3. d) Top: fluorescence in c as a function of 1P intensity with linear fit. Bottom: fluorescence as
a function of 2P power with quadratic fit. e) Log‐log plot of count rate vs. optical power on the cell for seven voltage
indicators. 1P data: filled symbols, 2P data: empty symbols. Error bars are SEM from at least n = 8 cells. The excitation
wavelengths used for 1P (2P) excitation of each of the reporters were: ASAP3 488 nm (930 nm), BeRST1 635 nm (850
nm), JEDI‐2P 488 nm (930 nm), QuasAr6a 635 nm (900 nm), Voltron2525 488 nm (930 nm), Voltron2585 594 nm (1100
nm), Voltron2669 635 nm (1220 nm). A horizontal line is shown at 1.5x107 counts/s, equivalent on our camera to 107

impinging photons/s. f) Whole‐cell patch clamp protocol for measuring voltage sensitivity under 1P and 2P excitation. g)
Average voltage responses of JEDI‐2P and Voltron2525 under 1P and 2P illumination. h) Ratio of voltage contrast under
2P vs. 1P illumination for JEDI‐2P and Voltron2525, n = 5 cells per construct.
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is consistent with published reports: 2P imaging of JEDI-2P was reported at a power of 9 – 12

mW/cell38, whereas 1P imaging of similar GFP-based GEVIs is typically performed at

1 – 10W/cm2,38,104 corresponding to 1 – 10 μW/cell. Estimates based on tabulated 1P and 2P ab-

sorption coefficients119 give a similar factor of∼104 difference in power efficiency (Appendix A).

We then measured voltage sensitivity of one representative from each GEVI family, comparing

1P and 2P illumination. Using whole-cell voltage clamp in HEK cells (Fig. 3.1f), we found that the

contrast ( ΔF/F per 100 mV) of the VSP-based JEDI-2P was similar for 1P and 2P illumination.

The opsin-based chemigenetic indicator Voltron2525 showed voltage sensitivity under 1P but not 2P

illumination (Fig. 3.1g-h). Loss of voltage sensitivity under 2P illumination of FRET-Opsin GEVIs

has been reported previously60, but the mechanism is unknown (see chapter 2).

3.4.3 Testing the dependence of 1P and 2P signal as a function of depth

To characterize the depth dependence of 1P and 2P voltage imaging in brain tissue, we sparsely

expressed soma-localized JEDI-2P in mouse cortex. Chien et al. previously showed that for voltage

imaging in brain tissue, restricting 1P illumination to the soma led to an∼8-fold improvement

in signal-to-background ratio compared to wide-field illumination, by minimizing background

from off-target illumination.84 We thus compared soma-targeted 1P imaging and raster-scanned 2P

imaging at several depths (Fig. 3.2a-b; Methods).

With 1P illumination, JEDI-2P-expressing cells were resolvable down to d∼ 200 μm. The

challenge for 1P imaging at greater depths was not shot noise, but rather decrease in signal-to-

background ratio. At depths > 200 μm, cells were not distinguishable from background by 1P imag-

ing with patterned 488 nm excitation (Fig. 3.2c).

With 2P illumination, cells were resolvable to d = 473 μm, the greatest depth we tested (Fig.

3.2b). As the cell depth increased, we increased the 2P laser power to maintain sufficient count rate

to resolve the cells, up to P0 = 140 mW at d = 473 μm.
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Figure 3.2: a) Experimental protocol. In a mouse expressing JEDI‐2P, raster‐scanned 2P (λ = 920 nm) and DMD‐
patterned 1P imaging (λ = 488 nm) were alternately applied to neurons at different depths. 1P illumination patterned to
cell‐free regions was used to estimate background signal. b) Example 1P and 2P images of cells at three depths. Scale
bars 5 μm. c) Estimated signal‐to‐background ratio for n = 43 neurons under patterned 1P illumination. d) Mean count
rate from the membranes of n = 43 neurons under 2P illumination. Color indicates excitation power. Inset shows cell at
473 μm depth. (Scale bar 5 μm).
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3.4.4 Limits to 2P excitation power in brain tissue

The heating caused by 2P illumination can transiently perturb neural function, and at high levels

can damage tissue. Most ion channel gating properties have a Q10 (i.e. ratio of rates at tempera-

tures separated by 10 °C) between 1 and 3.120 Changes of 1°C can cause changes in neuronal firing

rates.121 In rodents, brain temperature may fluctuate under physiological conditions by up to 4

°C.122 Podgorski and Ranganathan98 found lasting damage after continuous illumination of a 1

mm2 scan at 250 mW, corresponding to a steady-state temperature change of∼5 °C.

The relation between laser power and heating depends on scan area, scan pattern, and measure-

ment duty cycle. For a 1 mm2 square scan pattern, Podgorski and Ranganathan found steady-state

temperature coefficients between 0.012 and 0.02 °C/mW at wavelengths from 800 – 1040 nm,

equivalent to a temperature rise of < 2 °C at 100 mW illumination. They simulated the dependence

of temperature rise on scan area and found a weak dependence. Their results predict a maximum

temperature coefficient of 0.03 °C/mW for a square scan of side length 20 μm (representing a sin-

gle neuronal soma). The precise value of this coefficient depends both on the brain region and the

wavelength54. Finally, Podgorski and Ranganathan show that reducing the illumination duty-cycle

to 10 s on, 20 s off, allowed brighter illumination to be used during “on” periods, while still keep-

ing time-averaged heating beneath the damage threshold. Some experiments may permit low duty-

cycle imaging while others may not. Hereafter we use 200 mW as a reasonable upper bound on the

power, acknowledging that this limit may be higher (or lower) depending on many experimental

details.

3.4.5 Estimating measurable cells as a function of depth

Shot noise places an upper bound,N2P
cells, on the number of cells which can be measured simulta-

neously via 2P illumination with a given illumination power and SNR. Under a protocol which
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sequentially visits single cells,N2P
cells depends on both the brightness and voltage sensitivity (see Ap-

pendix A for derivation):

N2P
cells =

A · τ · P2 · β2φ
SNR2 (3.2)

Here A is the brightness coefficient derived from the HEK cell experiments (Eq. A.1), τ is the

integration time, P is the laser power at the focus, β = ΔF/F per spike, φ is the fraction of the scan

that intersects with the cell membrane (i.e. the imaging duty cycle), and SNR is the target ratio of

the spike amplitude to shot noise. The value of A is specific to the laser repetition rate, pulse width,

focal parameters, and detection optics. We discuss the effects of varying these parameters below. For

an analysis that includes the effect of light scattering on depth-dependent collection efficiency, see56.

The parameter φ approaches 1 for perfectly membrane-targeted illumination. To estimate φ for

a raster scan over a bounding box around a single cell body, we examined 2P images of pyramidal

cells with membrane-targeted fluorescent tags in cortex layer 2/3. In these images, the membrane-

labeled area fraction within the bounding box was φbb = 0.18 ± 0.07 (mean ± std, n = 10 cells). For a

raster scan over multiple sparsely expressing cells, φ is lower than φbb by a factor of the sparsity. The

low values of φ for raster-scanned 2P imaging are a consequence of the membrane-localized signal

and highlight the importance of membrane-targeted illumination. However, precise targeting of

the illumination to the membrane increases sensitivity to motion artifacts. The ULoVE technique

brackets the membrane with pairs of spots and thereby mitigates the effect of small motions.104

Eq. 3.2 can be used to predict the scaling ofN2P
cells as a function of depth, d, for 2P voltage imag-

ing. The power at a laser focus decays exponentially with d, with an extinction length, le, in brain

tissue. At λ = 920 nm le is between 11256,123 and 155 μm.124 Due to the quadratic dependence

of 2P signal on focal intensity, the 2P signal decays with a length constant of le/2. Substituting

P = P0e−d/le into Eq. 3.2 implies a decay inN2P
cells by a factor of 10 for every 130 - 180 μm increase
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Figure 3.3: a) Predicted number of simultaneously measurable cells as a function of depth, based on brightness derived
from HEK cells expressing JEDI‐2P (Fig. 3.1). We assumed a spike contrast of β = 0.2, target SNR of 5 (blue) or 10 (red)
in an integration time τ = 1 ms, a total power P0 = 200 mW, targeting fraction φ = 1, scattering length le = 112 μm 123,
and a detector with perfect quantum efficiency. b) Predicted number of simultaneously measurable cells at SNR=10 and
200 mW power for each experimentally‐measured single‐cell count‐rate reported in (Fig. 3.2d). c) Number of simultane‐
ously measurable cells under 2P illumination at a depth of 500 μm, assuming brightness and contrast improvements of
future GEVIs, target SNR of 10, and all other parameters as in (a).

in d (Fig. 3.3a), assuming constant power P0 into the tissue.

We applied Eq. 3.2 to the instantaneous count rates measured from the cell membranes (Fig.

3.2d) to estimateN2P
cells for φ∼ 1, i.e., a perfectly membrane-targeted annular scan pattern. We con-

verted the digital count rates to impinging photon rates to provide an upper bound of performance

for a perfect detector. Modern scientific cameras come quite close to perfect detection efficiency.

We assumed β = 0.2, based on the reported spike response of JEDI-2P38 and a target shot noise-

limited SNR of 10 in a 1 kHz bandwidth, and extrapolated the count rates to an input power of

P0 = 200 mW. The estimated number of measurable cells decreased quickly at d > 200 μm and

dropped below three at d > 470 μm and input power 200 mW (Fig. 3.3b). These results are similar

to the prediction from the simple model using the 2P count rates from our HEK cell experiments

(Fig. 3.3a, blue line).

The palette of available voltage indicators is continually improving.125 We therefore considered

the scaling ofN2P
cells with changes of brightness and spike height (β). N

2P
cells depends linearly on A and

quadratically on β (Fig. 3.3c). An order-of-magnitude increase in molecular brightness coupled with
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a 2.5 fold increase in β compared to JEDI-2P could enable high SNRmeasurement of >8 cells at

depths up to 500 μm.

3.4.6 Effect of GEVI kinetics

Some GEVIs have response times that are slow compared to the duration of a spike. On one hand,

this blunts the amplitude of the spike response; on the other, it permits one to average for longer to

detect whether a spike has occurred (assuming that the interval between spikes remains long com-

pared to the response time of the GEVI). Here we analyze this tradeoff.

Consider a GEVI subjected to a voltage step which induces a steady-state change in fluorescence,

ΔF
F = M. Assume that the GEVI responds to a voltage step of length t with exponential response

time constants τon and τoff (Fig. 3.4a,b). We can then write the total integrated fractional response,

R, as (see Appendix A for derivation):

R = M
(
t+
(
τoff − τon

) (
1− e−t/τon

))
(3.3)

Eq. 3.3 assumes collection of the entire tail of the decay. Collection will have to be truncated after

a finite integration time, so Eq. 3.3 will provide an upper bound to signal. Assuming an integration

time equal to t+ τoff, we can express the SNR in terms ofR as (see Appendix A for derivation):

SNR =
RFφ√

Fφ
(
t+ τoff

) (3.4)

A large τon will decrease the magnitude of the response β to a short electrical spike, decreasing

instantaneous SNR proportionally. A large τoff, however, increases the duration of the impulse

response function, increasing the duration of the signal that can be integrated, leading to an increase

in SNRwith the square root of τoff (Eq. A.7, Fig. 3.4c). When τon and τoff can be independently
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Figure 3.4: a) The response of a reporter to a 1 ms voltage stimulus. An exponential rise with time constant τon reaching
a maximum of β followed by an exponential decay with time constant τoff. The total area under both response phases
(cross‐hatched) is the total available response signal. b) The total area under the curve in (a) as a function of τon and
τoff. Increasing τoff allows longer integration time, while increasing τon truncates the response. c) The effects on SNR of
changing τon or τoff with the other fixed. At large values, the dependence of SNR on τon has an exponent of ‐1, while at
large values, the dependence of SNR on τoff has an exponent of ‐1/2.

chosen, τon should be minimized (with diminished effect once τon is well below the spike width)

and τoff maximized subject to the inter spike interval. Often, these time constants are biophysically

related. In the case of comparable τon ≈ τoff = τ, it follows that SNR ∼ τ−1/2 (see Eq. A.7). That

is, faster GEVIs are better than slower ones in terms of shot noise-limited SNR, all else being equal.

3.4.7 Effect of optical parameters on 2P fluorescence

Advances in 2P voltage imaging typically have two aims: 1) increasing the number of cells, N, which

are sampled with high enough revisit rate to capture all electrical dynamics; and 2) increasing fluo-

rescence per cell to improve the shot noise-limited SNR. In many cases, these two aims are in ten-

sion.
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Changing numerical aperture

We distinguish between numerical aperture of excitation (NAe) and of collection (NAc). Often,

NAc is set by the objective NA, while NAe may be lower as a result of underfilling the objective back

aperture. The photon detection efficiency, PDE, scales as PDE ∼ NAc
2. The effect of excitation

numerical aperture (NAe) on the 2P signal depends on the sample geometry. Within the Gaussian

beam approximation (Fig. 3.5a), the width of the focus scales as

w0 ∝
1

NAe

The intensity, I, at the focus scales inversely with the cross-sectional area (so I ∝ NA2
e ), and the

rate of 2P excitation per molecule, E, scales with the intensity squared. Hence

E ∝ NA4
e

The axial extent of the beam waist scales as

b ∝ 1
NA2

e

The total signal from a volume element depends on the number of fluorophores excited. In a

three-dimensional bulk solution, an approximation of 2P Ca2+ imaging when the beam waist is

significantly smaller than a single cell, the volume scales approximately asV ∼ w2
0 b ∝ 1

NA4
e
. The

total fluorescence emission τ2P scales asV × E. Hence, in bulk solution, Γ2P ∝ NA0
e , so that the

total collected fluorescence, F, scales only with NAc as F ∼ NA2
c .

In contrast, for 2P voltage imaging, the signal scales with NAe raised to a power between 1 and 3,

depending upon the orientation and geometry of the membranes in the focal spot (Fig. 3.5b, first

row). This scaling argues strongly for maximizing the NAe for 2P voltage imaging. On the other
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Figure 3.5: a) Geometry of a Gaussian beam, showing the width (w0 ∼ 1/NA) and waist (b ∼ 1/NA2). b) Scaling
of total 2P fluorescence as a function of excitation NAe for different sample geometries. All slender dimensions are
assumed to be≪ w0 and all extended dimensions are assumed to be≫ b. In a planar raster scan, the fraction of time
that a sub‐wavelength structure is excited, φ, depends on the focus width and hence the NAe. In cases (iii), (v), and (vi)
we assume that the object is perfectly in focus, i.e., in the axial plane where focus size is minimum. The collection effi‐
ciency for all geometries depends on the collection solid angle∼ NA2c . To calculate total signal for targeted illumination,
multiply the first and third lines; for a raster scan, multiply all three lines. c) Total fluorescence evoked by the intersec‐
tion of a laser focus and a spherical membrane, 10 μm diameter. We compared 1P and 2P excitation with equal NAc
and NAe, with powers adjusted to match per‐molecule excitation rates at the focus at NA = 1.2. The much smaller 2P
focal volume led to 5.3‐fold smaller maximum fluorescence at the highest NA (and even greater discrepancy at lower
NA) and 3‐fold greater sensitivity to misalignment, compared to 1P excitation.
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hand, a smaller excitation spot leads to (a) a higher rate of photobleaching and (b) greater sensitivity

to misalignment between the focus and the sample, e.g., from sample motion (Fig. 3.5c).

Advanced scanning modalities

State-of-the-art techniques for high-speed 2P microscopy often involve shaping and splitting the

excitation in space and time68,70,104,126,127. While these techniques are powerful ways to increase

the speed (f), targeting efficiency (φ), and robustness to motion of the microscope, they cannot

surpass the SNR of a sequential point-focus scan at a given total power, pulse width and repetition

rate. If, however, the system is limited not by the total power but by non-linear photodamage and

saturation of the 2P excitation, splitting the pulse in space and/or time can allow more power to be

safely delivered and can therefore increase SNR. This manuscript focuses on the optical SNR limits

of voltage imaging. If the number of cells measurable is constrained to a lower limit by scanning

speed, better performance may be achieved with a non-point-scanning technique. Here we discuss

the effects on optical SNR of changes to instrumentation.

Spatial and temporal focal multiplexing

Both spatial and temporal splitting of a single focal pulse involve a reduction in per-focal-pulse en-

ergy (at constant total power) in return for a proportional increase in the number of focal pulses

imaged per second. It is convenient to define an effective repetition rate, feff, as the product of the

temporal repetition rate with the degree of spatial multiplexing. A system that performs 4x tem-

poral and 2x spatial multiplexing of a 31.25MHz laser will have an effective repetition rate of 250

MHz.67 At a fixed power, increasing feff proportionally decreases the energy delivered to each focal

pulse, ε (Fig. 3.6a). Since 2P fluorescence scales with the square of pulse energy, but only linearly

with the number of focal pulses, fluorescence (and SNR) can be maximized by minimizing feff and
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maximizing ε. An N-fold decrease in effective repetition rate will lead to a
√
N-fold increase in mea-

surable cells at fixed power. This is consistent with a report that decreasing laser repetition rate 320-

fold from 80MHz to 250 kHz allowed an increase in the number of cells imaged from 1 cell/125

mW to 17 cells/125 mW.68

The same principle holds in the case of continuous focal volume expansion. An increase of spot

area by a factor ofN leads to a decrease in fluence by the same factor, assuming fixed pulse energy.

Fluorescence is proportional to the area excited, fluence squared, and an axial expansion factor that

represents a combination of the axial depth of focus and the axial distribution of the fluorophores.

For a horizontal membrane, there is no axial expansion, assuming that the focus is larger than the

membrane thickness. For a Gaussian focus on a vertical membrane, the axial expansion factor is pro-

portional to N, while the lateral area excited only grows by
√
N, since the membrane only extends

on one lateral direction. Therefore, a horizontal membrane will experience a fluorescence scaling

Figure 3.6: a) At fixed total power, per‐spot pulse energy and effective repetition rate (rate x Nspots) are inversely pro‐
portional. Photophysics dictate that SNR can be increased by increasing pulse energy up to the threshold (1 nJ horizon‐
tal line shown). Therefore the optimal effective repetition rate can be found by finding the intersection of the iso‐power
line with the threshold (circled in red). At a non‐zero depth (dotted lines), a lower repetition rate is needed to produce
the same focal pulse energy. b) For a single spot, the optimal effective repetition rate crosses beneath 80 MHz (hori‐
zonal line) at∼100 μm depth for a total power of 200 mW and a pulse energy threshold of 1 nJ. Decreasing the thresh‐
old increases the optimal repetition rate at a given depth. c) For a fixed effective repetition rate, the focal pulse energy
decays exponentially with depth. At a high rate of 250 MHz, a 1 nJ pulse is not achievable at any depth. For a low rate
of 40 MHz, the pulse energy is above the threshold up to∼200 μm depth, beyond which the energy is sub‐optimal.
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of 1
N , while a vertical membrane will experience a fluorescence scaling of 1√

N
(Fig. 3.5b). A smaller

focus on a cell membrane will therefore give more fluorescence for a fixed power budget and the

number of cells measureable at a fixed SNR and power will scale withN−1/2 toN−1/4. Indeed, Sims

et al. found that a whole-cell temporally-focused scanless system performed better with speckled il-

lumination that approximated a point array than with more uniformly spread-out illumination.68

Our model suggests that increasing spot area by a factor of∼100 to cover an entire cell would lead

to a drop in Ncells of between 3 and 10, predicting fewer than 3-10 cells measureable with an 80

MHz laser with SNR of 10 at the brain surface. If the expanded spot only excites the 20% of the

projected membrane area that is vertically oriented around the perimeter (see earlier estimates of φ),

we would combine the 3x reduction in measurable cells for a vertical membrane with a φ factor of

0.2 to get a prediction of <2 measurable cells. This is consistent with the reported performance of a

scanless system using a whole-cell spot.68

Trading repetition rate for pulse energy is only beneficial up to a certain maximum energy. Sat-

uration of the 2P excitation typically occurs at pulse energies of∼1 nJ99. Furthermore, the peak

intensity at the laser focus must not become too high or the sample may experience nonlinear pho-

todamage.128,129 For a fixed pulse width and spot size, this limit will be independent of feff. The

optimal feff can therefore be found as the repetition rate at which pulse energy reaches but does not

exceed this limit (Fig. 3.6a). Simultaneously approaching the 2P saturation energy ( 1 nJ) and the

maximum power into the sample (∼200 mW) implies a depth-dependent optimum laser repetition

rate (Fig. 3.6b) of 1 – 10MHz at depths of 5 le, where le is the exponential attenuation length.99

Indeed a 2.5 MHz fiber-based soliton laser source was demonstrated to have 26-fold greater average

signal than a matched 80MHz Ti:Sa laser.99 Effective repetition rate must be high enough to visit

each measurement point at least once per measurement cycle. For example, an 800 kHz laser could

visit 800 points at a 1 kHz revisit rate (assuming a suitable scanner existed) and would provide 100-

fold higher time-average count-rate (and 10-fold higher shot noise-limited SNR) than the same laser
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power delivered at 80MHz, assuming a sub-saturation pulse energy.

Any system with a fixed value of feff will only perform optimally at one specific depth (Fig. 3.6c).

Beyond the optimal depth, pulse energy will be decreased, while above that depth, power must be

reduced to avoid exceeding the pulse energy limit. The feff of a system should therefore be tuned to

the specific power limit, energy threshold, and depth required for a given experiment.

Optimizing the polarization

For membrane-localized chromophores, signal can be increased by aligning the excitation polar-

ization with the transition dipole of the chromophore.130 For 1P excitation, this effect scales as

⟨cos2 θ⟩, where θ is the angle between the excitation polarization and the transition dipole, and the

average is taken over the distribution of molecular orientations. The magnitude of the polarization-

dependent effect is characterized by (ΔF/F̄)pol , where F̄ is the fluorescence for unpolarized exci-

tation and ΔF = Fmax − F̄. At the cell periphery, where the optic axis lies in the plane of the

membrane, this effect magnitude was (ΔF/F̄)pol = 54% for the dye BeRST1, 20% for ASAP1, 13%

for QuasAr3, 12% for ArcLight, and 4.5% for the FRET-opsin GEVI mNeon-Ace.130

For 2P excitation, polarization sensitivity scales as ⟨cos4 θ⟩131 and can lead to large polarization-

dependent changes in fluorescence signal from neurites with membrane-bound reporters.132 Thus

2P voltage imaging systems could improve their power efficiency by ensuring linearly polarized ex-

citation at the sample and selectively targeting cell membranes that have a favorable orientation

relative to the laser polarization; or modulating polarization during a scan to match the orientation

of the target membranes.
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3.4.8 Can advanced analysis techniques overcome the shot noise limit?

Consider the goal of detecting whether a spike occurred (hypothesisH(1)) or did not occur (H(0))

during a measurement time τ. The mean number of detected photons in the case of a spike is n1,

and in the absence of a spike is n0. The probability distributions for number of detected photons in

the two cases are then given by Poisson distributions with means n1 and n0 respectively:

p
(
n
∣∣∣H(1)

)
= Poisson(n; n1)

and

p
(
n
∣∣∣H(0)

)
= Poisson(n; n0).

If the number of photons collected in either scenario is not large and the contrast β = (n1 −

n0)/n0 is also small, then the two probability distributions overlap: a given set of detected photons

could have been produced by either the presence or absence of a spike. In such cases, no analysis

algorithm can unambiguously determine whether a spike occurred; at best one can determine the

relative probabilities of the two hypotheses. This argument is analyzed in detail in Ref.108.

Voltage signals corresponding to spikes are typically correlated across multiple pixels, and some-

times across frames (depending on the frame rate and spike duration). Since the photon shot-noise

is statistically independent between all pairs of pixels, the relative contribution of shot noise can be

diminished by weighted averaging across pixels and possibly across frames. If the expected number

of photon detections at pixel i is ⟨ni⟩ and a filter assigns weight ai to the pixel, then the expected sig-

nal is S =
∑

i ai⟨ni⟩, and the variance in this quantity due to photon shot noise is σ2S =
∑

i a2i ⟨ni⟩.

The art in voltage imaging analysis comprises determining the ai so as to maximize the difference

between p
(
S
∣∣H(1)) and p (S∣∣H(0)).
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Determination of the weights ai can be via simple manual or activity-based selections of regions

of interest or via optimal detection algorithms, e.g. as in41. When signals frommultiple sources

overlap, a variety of unmixing algorithms are useful.133–137 It is possible even to apply a filter dur-

ing image acquisition to reduce the data burden.138 Recently introduced machine learning algo-

rithms111,114 can help determine optimal weighting of pixel signals. None of these techniques over-

comes the fundamental uncertainty resulting from the fact that different voltages can give identical

photons arriving at the detector. Thus claims that these methods “overcome fundamental limits”67

of shot noise are misleading.

3.5 Discussion

Eq. 3.2 places severe constraints on the number of cells that will be measurable at d > 300 μmwith

2P voltage imaging, even with substantial improvements in GEVI brightness and voltage sensitiv-

ity (Fig. 3.3c). These findings indicate that 2P imaging of hundreds of neurons with high SNR at

depth > 300 μmwill require an order-of-magnitude improvement in 2P GEVIs or qualitatively new

approaches to imaging. Given the current state of the art, one can maximize SNR and number of

measurable cells at depth by using excitation with high numerical aperture, low repetition rate (1

– 10MHz), short pulses (< 100 fs), and membrane-targeted illumination with real-time compen-

sation for tissue motion. Optimal imaging can be achieved by customizing spatial multiplexing,

temporal repetition rate, and/or excitation NA for the target imaging depth and power limit. Exper-

iments that allow for intermittent imaging and/or distribute the measurements sparely in space can

allow for peak illumination power, up to the limits set by fluorophore saturation and/or nonlinear

photodamage.

Voltage imaging in vivo places stringent demands on the molecular, optical, and data analysis

tools. We hope that a comprehensive understanding of these constraints will both shape realistic
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expectations and guide efforts towards enhancing the performance of 2P voltage imaging.

———–

3.6 Manuscript Information

3.6.1 Previously published as

A version of this chapter appeared in95:

Davis, H. C., Brooks, F. P., Wong-Campos, J. D., Cohen, A. E. Optical constraints on two-

photon voltage imaging. 2023.11.18.567441 Preprint at https://doi.org/10.1101/20

23.11.18.567441 (2023).

3.6.2 Acknowledgements

We thank Andrew Preecha and Shahinoor Begum for technical assistance, and Simon Kheifets and

Vicente Parot for helpful discussions. This work was supported by NIH grant R01-NS126043.

3.6.3 Data availability

Data are publicly available on the DANDI archive.

• Scaling of GEVI fluorescence with 1P and 2P illumination intensity: https://dandiarc

hive.org/dandiset/000537.

• 1P and 2P contrast of JEDI-2P and Voltron2525: https://dandiarchive.org/dandi

set/000538.

Data on the depth-dependence of fluorescence are in process of deposition.

61

https://doi.org/10.1101/2023.11.18.567441
https://doi.org/10.1101/2023.11.18.567441
https://dandiarchive.org/dandiset/000537
https://dandiarchive.org/dandiset/000537
https://dandiarchive.org/dandiset/000538
https://dandiarchive.org/dandiset/000538


3.6.4 Code availability

The instrument control code is available at www.luminosmicroscopy.com and https:

//github.com/adamcohenlab/luminos-microscopy/.

3.6.5 The author’s contributions

Hunter Davis, Frederick Brooks, and Adam E. Cohen designed the study and experiments. Hunter

Davis collected all of the data. J. DavidWong-Campos performed all mouse surgery and preparation

for imaging and assisted with in vivo data collection. Hunter Davis, and Frederick Brooks performed

all analyses. Hunter Davis and Adam E. Cohen wrote an initial draft of the manuscript with input

from all authors. Frederick Brooks and Adam E. Cohen significantly rewrote the entire manuscript,

substantially expanding and clarifying all sections and adding in-depth discussions of reporter kinet-

ics (Fig. 3.4), spatiotemporal splitting (Fig. 3.6), and advanced analysis techniques. Adam E. Cohen

supervised the work.

62

www.luminosmicroscopy.com
https://github.com/adamcohenlab/luminos-microscopy/
https://github.com/adamcohenlab/luminos-microscopy/


4
Luminos: Open-source software for

modular bi-directional microscopy

4.1 Introduction

The emerging field of all-optical electrophysiology provides powerful methods for interrogating

neural organization and processing (e.g.,105), but these techniques are currently only accessible to
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a small number of researchers. The unique photophysical demands of optical electrophysiology95

require degrees of speed, synchronization, and multi-dimensional control that are difficult to achieve

using readily-available control software. For instance, a single digital micromirror device (DMD)

may be used to independently pattern blue stimulation and orange imaging light by synchronizing

acousto-optical tunable filter (AOTF) control waveforms with a pattern-switching DMD trigger

(Fig. 4.1a). At the same time, analog control and feedback of light intensity, galvanometric scanners,

and/or a patch-clamp amplifier may be required. All this must be performed while imaging at a 1

kHz frame rate, with stimulus and signal jitter of < 0.1% between frames.

The well-known μManager open-source modular microscope control package139 is built around

the demands of lower-speed loosely-synchronous acquisitions for which sequential real-time com-

mands provide acceptable control synchronization. This model of sequential script-based experi-

ment control is limited by unpredictable delays introduced by operating systems and packet-based

communications and cannot produce consistent timing below tens of milliseconds.140 While

camera-frame-level synchronization can be achieved using an external hardware sequencing de-

vice, arbitrary sub-frame high-speed synchronization is not achievable without significant custom

hardware or software development work.

ScanImage59 is another popular microscope control package and can provide synchronization

superior to μManager. It does not currently implement camera-based video acquisition, however,

which prevents its use for most voltage imaging experiments. Our lab, and others in the emerging

field, have therefore relied heavily on custom control software, which is difficult to maintain within

a lab and nearly impossible to share in a useful way.

To make optical electrophysiology more generally accessible, we present Luminos, an open-

source library for highly synchronized microscope control. While motivated by the demands of

optical elecrophysiology, this library is general and is intended to be used for a wide range of experi-

ments. In Table 4.1, we compare Luminos with existing microscope control solutions.
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Figure 4.1: a) Example of highly‐synchronized acquisition protocol involving alternating blue stimulus and orange imag‐
ing light patterned off of the same DMD, with pattern switching controlled by a trigger input to the DMD. Camera
frames are synchronized by a trigger input to the camera. b) Functional diagram of Luminos control connectivity. The
DAQ is the center of the system, exerting tight synchronous control of cameras, shutters, modulators, patterning de‐
vices, and other devices. The PC uses asynchronous loosely‐timed communication to set up the DAQ and to control a
partially overlapping set of devices. Some devices will have no direct connection to the PC, while others (such as mo‐
tion controllers) may have no provision for synchronous communication and are necessarily controlled by the PC. c)
Code‐level hierarchy of Luminos. Information flows between low‐level optimized drivers written in C++, the modular
object‐oriented configurable core written in MATLAB, and the top‐level user interface written in ReactJS. MATLAB
and the MATLAB logo are trademarks of Math Works. The C++ logo is a trademark of the Standard C++ Foundation. d)
Examples of an analysis showing electric signal propagation through a neuronal dendritic arbor after targeted somatic
optogenetic stimulation. Data acquired using Luminos. Figure adapted from45.
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Table 4.1: Comparison of Luminos and existing control solutions.

Name

Supports
high-speed
camera

acquisition?

Timing CPU
limited?

Hardware
agnostic?

Source
availability

Customiza-
tion

language

μManager139 Yes Yes Yes Open source Various

ScanImage59 No No Yes
Proprietary
(Limited

Open Source)
MATLAB

Scope141 No No Yes Open Source C++
Various

Proprietary Various Various No Proprietary Various/None

Luminos Yes No Yes Open source MATLAB

4.2 Main Text

Luminos is based on the capabilities of a buffered Data AcQuisition system (DAQ). In fact, we find

it useful to view the DAQ as the center of the control system, with the PC used only to set up the

acquisition, stream the resulting data, and record the metadata (Fig. 4.1b). This is a paradigm shift

from other open-source control packages like μManager, which view the PC as the center of the

control system and are therefore limited by the latency and jitter of the PC’s operating system (OS).

Using the capabilities of National Instruments Data Acquisition devices (NI-DAQs), analog and

digital control waveforms are pre-defined and loaded onto the NI-DAQ. Similarly, DMD control

pattern sequences are pre-calculated and loaded onto the DMD local memory. The camera(s) is also

pre-configured such that its acquisition is dependent only on the DAQ. Initiation of an experiment

consists of starting the pre-loaded DAQwaveforms, handling any resulting data streams, and saving

metadata once the DAQ has finished. Device synchronization is limited only by internal device

response to digital/analog controls.

Luminos consists of three software layers (Fig. 4.1c). The center layer, at which most customiza-

tion will be performed, is a modular MATLAB core with classes representing each device type and
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acquisition scripts to set up and terminate each type of experiment. Experiments can in fact be run

entirely from theMATLAB command line. This layer also handles referencing of all patterning and

imaging devices to a common set of spatial coordinates. While open-source languages like Python

are growing in popularity, we find that the combination of computational power, ease of use, and

standardization of MATLAB is attractive. A compiled C++ driver layer supports performance-

critical components like high-speed camera streaming, live video display, and DAQ configuration.

At the top layer, a customizable user interface (UI) written in JavaScript with React provides an

intuitive interface. Separate tabs for different device classes along with the ability to save and load

custom configurations facilitate rapid implementation of complex protocols. Once the software is

configured for a given microscope, most experiments will be performed entirely from this top-level

interface.

In addition to a powerful control implementation, Luminos provides consistent logging of data

and metadata. Upon completion of each acquisition, Luminos logs the complete state of the virtual

microscope in a highly predictable MATLAB .mat file. The user does not have to decide which rel-

evant metadata to record, and experiment data from different custommicroscopes can be analyzed

using the same code. The user can also record notes in a virtual notebook provided on the UI.

Luminos has been used in our lab and by collaborators for a wide range of experiments. We have

performed simultaneous targeted optogenetic stimulation and high-speed voltage imaging of neu-

ronal dendrites, using Luminos’ DMD patterning abilities to target blue stimulus to the soma while

imaging the entire cell (Fig. 4.1d).45 In another experiment, simultaneous dual-plane patterned illu-

mination combined with blue channelrhodopsin stimulus allowed simultaneous perturbation and

monitoring of somatic and dendritic membrane potential dynamics in awake mice46. We have made

an adapter for the ViRMEn virtual reality (VR) engine142 to allow optical electrophysiology exper-

iments in a VR environment. We hope that making this library broadly available will make these

sorts of experiments accessible to many more scientists.
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In the Implementation section we provide details of Luminos architecture and data flow, a list

of currently supported hardware, and tutorials describing basic setup and use of the software. The

source code and documentation for Luminos can be found at https://github.com/adamcoh

enlab/luminos-microscopy and https://www.luminosmicroscopy.com.

4.3 Implementation

4.3.1 Details of Luminos code architecture

Luminos’ core functionality is implemented in modular object-oriented code in bothMatlab and

C++. On top of these functional core layers, a ReactJS layer provides a tab-based intuitive web in-

terface.

The top-level unit of function of Luminos is an instance of a Rig_Control_App object. The

Rig_Control_App superclass manages device initialization, JavaScript communication, experi-

ment coordination, and metadata saving. Distinct subclasses of the Rig_Control_App are made

for each microscope, and multiple subclasses (virtual microscopes) can share overlapping sets of

hardware. Microscope-specific subclasses may, but need not, implement additional functionality.

Individual hardware devices or virtual devices (e.g., a single analog output from the DAQ) are

represented by instances of the abstract Device superclass. We implement a multilevel class hier-

archy so that, for example, functionality common to all types of patterning devices (calibration,

ROI selection, etc.) is specified in a mid-level abstract Patterning_Device superclass, with the

particular implementations given in device-specific subclasses. This allows for device-agnostic mod-

ular code so that, for example, a DMD patterning tab can be implemented without knowing which

specific DMD device will be used.

Each device class consists of properties that will automatically be part of the archived metadata

after an acquisition, transient properties that will not be saved, and methods that implement the rel-
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evant device functionality. Device class instances are independent of the Rig_Control_App that

loads them and of other devices. Device instances may be loaded without loading the app using the

Standalone_Device() utility. This ensures that devices may be loaded in any order and main-

tains control over inter-device communications at the app level for more transparent and robust

code.

Performance-critical device implementation that benefits from thread parallelization or lower-

level device access is implemented in modular C++ code. We currently implement camera and live

video streaming, DAQ communications, galvanometric scanners, and ALP DMDs at this level.

Again, we make use of hierarchical class inheritance to specify a common interface in a high-level

class while providing the device-specific implementation in a subclass. The high-level

Cam_Wrapper class is currently subclassed by Hamamatsu_Cam, Andor_Cam, and Kinetix_Cam.

We split the compiled code into two functional parts. The custom device drivers are compiled to

C++ object files, which allows testing via compiled C++ testbenches. An adapter layer implements

the MATLAB interface and is compiled into mex files which provide a library interface to MAT-

LAB. This separation of the interface from the driver implementation would allow straightforward

use of these drivers with a different high-level language, for instance Python, simply by writing a

different adapter layer. For cross-hardware compatiblity, we do not implement any GPU-based com-

putation, but we do implement optional optimized vectorized instructions for parallel computation

using SSE 4.1 vector intrinsics on CPUs that support this (Intel after Penryn 2007/8; AMD after

Bulldozer 2011).

The ReactJS user interface is based on the tab as the fundamental unit and communicates with

Matlab via a local Node.JS server. A tab communicates with a set of devices, implements user device

control and inter-device coordination, and may contain subpanels for specific sub-functionality.

A tab may also communicate with components of other tabs. All apps will have a main tab (Fig.

4.2), which contains several subpanels, and a waveform tab (Fig. 4.3). Other tabs are optional, and
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custom tabs can be created using the ReactJS framework.

The main tab (Fig. 4.2) contains a text entry field for naming each acquisition. Below is a panel

that provides real-time control over all digital shutters, analog modulators, and filter wheels. For

systems with a computerized stage connected, a stage controller panel provides control and readout

of current stage position. A notes panel saves notes into an associated text file in real time. On the

right, a button calls the associated acquisition script, and below that, the camera panel allows con-

figuration of the camera, with a plot displaying a real-time plot of average intensity in a user-selected

region of interest. When multiple cameras are present, the camera control panel will also be tabbed,

with a tab for each camera. The advanced frame triggering mode dropdown allows configuration of

the camera to synchronize each frame to a trigger pulse provided by the DAQ. The app exit button

is present on all tabs and allows clean exit from the app. If configured, the app will automatically

copy all data from that session to a pre-specified remote server directory that is independently con-

figured for each user.

The waveform tab (Fig. 4.3) allows configuration of the buffered waveform that will be loaded

onto and run from the DAQ. The plot at the top provides a preview of the waveform. The global

properties panel allows setting of overall waveform duration, DAQ clocking rate (which must match

the external clock rate if not using the internal DAQ clock), the clock connector, the trigger connec-

tor, and the triggering mode. Self-trigger mode allows the DAQ to start upon software command,

sending a trigger pulse out on the trigger connector, while external-trigger mode instructs the DAQ

to begin acquisition when it receives a pulse on the trigger connector. These triggering capabilities

may be used to synchronize a Luminos-based system with a separate hardware or software acquisi-

tion sequencer or microscope. A single waveform is made up of one or more analog outputs, digital

outputs, and analog inputs. A set of pre-defined waveform function files provide an expansible

repertoire of basic waveform types that can be customized with several parameters each. Full wave-

form configurations can be saved and loaded with buttons at the top right, and a waveform-only
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Figure 4.2: The main tab provides overall experiment control, with experiment naming, on‐demand control of analog
modulators, digital shutters, filter wheels, and motion control, and control of the camera. A live‐updated plot shows a
trace of the brightness in a user‐selected region of interest from the live camera stream. A notes panel automatically
saves any notes that the user adds. The tab bar at the top allows navigation to the other tabs.
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Figure 4.3: The waveform tab provides specification of custom buffered waveforms with the ability to save and load
configurations. Clocking and triggering options provide essential control over timing, and the plot gives a preview of the
waveform. The dropdown interface provides a large amount of control without clutter. When an external clock is used,
the sampling rate must be set to match the external clock rate.
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acquisition without video can be started with another button.

All patterning tabs (Fig. 4.4) allow loading and display of a reference image, a calibration button,

and ROI selection tools. The specific ROI types available and any added functionality depend on

the specific type of patterning device. The DMD tab allows creation of polygonal, circular, and

freeform ROIs. Multiple ROIs can be combined, as in the case of targeting circular spots to neural

soma shown here.

While the ReactJS user interface is the most intuitive way to configure an experiment, the full

app functionality is present in the MATLAB layer. Devices and experiments can therefore be di-

rectly configured fromMATLAB using scripts or the command line (Fig. 4.5). This allows more

complex experiments to be configured. In fact, final configuration and intiation of all acquisitions is

performed by experimental scripts that are triggered by the user interface acquisition buttons. These

scripts set up the data directory, set up any necessary advanced timing, configure the master device

that will define the end of an experiment, and send software triggers to the DAQ and camera. We

provide seven example acquisition scripts, but arbitrarily complex acquisitions can be defined.

4.3.2 Details of Luminos information flow

There are two flows of information controlled by Luminos, asynchronous device configuration and

synchronous device control (Fig. 4.1b).

The flow of asynchronous device configuration information begins with the rig initializer files.

Each microscope app has a corresponding rig initializer file in JSON format. Upon initialization, the

Rig_Control_App instance loads this initializer and initializes each device with the correspond-

ing properties given in the file. This allows initialization of the microscope into a consistent prede-

fined state. After initialization, asynchronous commands can be sent either from the user interface

or fromMATLAB to update device configurations. At the end of acquisition, devices that have

been flagged for monitoring using the Rig_Control_App.assignDevicesForMonitoring()
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Figure 4.4: The patterning tab (a DMD tab in this case) provides various tools for drawing target regions of interest.
First, an affine semi‐automated calibration is performed using the “Calibrate” button. The user can then load a reference
image using the dropdown selector, and can draw arbitrary polygons, circles, or curves (three circles over neural soma in
this case. Image taken during data collection for chapter 2103). The pattern is uploaded to the DMD automatically. The
DMD tab does not currently provide the ability to load multiple patterns into a pattern stack in DMD memory, but this
capability is present in the MATLAB code and may be easily scripted into an experimental protocol.
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Figure 4.5: While the JavaScript UI offers powerful control, the entire control app exists as an object in the MATLAB
workspace and can be interrogated and controlled directly from MATLAB either through scripting or through live com‐
mands. Here, we display a summary of the app state. We extract the camera device, query the current exposure time,
change the exposure time, and then check that this change was effective. The updated exposure time will be reflected
in the UI camera panel as well.
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method will have all of their non-transient properties saved into the outputdata.mat metadata

file for use in analysis. Patterning device calibrations are also separately saved inMATLAB .mat files,

which are updated upon calibration. This allows calibration to be maintained between imaging

sessions. Asynchronous device communication is implemented in a device-specific manner. Many

devices implement ASCII serial command sets, while others come with driver libraries.

The flow of synchronous device control information begins on the waveform tab, where custom

waveforms are defined. These waveforms can be saved and loaded for reuse. Before acquisition, the

waveform is built and loaded into the DAQ buffer. Upon triggering, the DAQ begins synchronous

buffered operation of all defined outputs and inputs until the predefined acquisition time is com-

plete. Upon completion, the input and output buffers are saved with corresponding metadata into

the outputdata.mat file. DAQ operation can be clocked either internally or externally. For highly

synchronous camera acquisition, it is often necessary that the camera and DAQ share the same

clock. Many modern scientific cameras, including Hamamatsu Flash and Fusion and Andor iXon

cameras, provide a clock output that can be used to clock the DAQ. Similarly, for two-photon scan-

ning systems, it is possible to clock the DAQ from the pulsed laser. It is generally not possible to

ensure a shared clock for more than one device that does not have a clock input. All synchronous

control is implemented as analog and digital input-output links between the DAQ and the hardware

devices.

4.3.3 Configuring and using RAM-drive mode in Luminos

Modern NVMe SSD drives and/or RAIDed SSD arrays can support sufficient data throughput to

record at high speed directly onto disk. Systems with slower storage must stream into RAM instead.

Assuming sufficient RAM is installed to store a full acqusition while still leaving sufficient RAM

for program execution, Luminos can be configured to stream high-speed video directly to RAM,

copying the result over to the Data disk directory after the acquisition finishes. To do this, first in-
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stall ImDisk Toolkit (https://sourceforge.net/projects/imdisk-toolkit/) and create

a RAMdisk of the necessary capacity with drive letter R:. Then set the “rdrivemode” parameter to 1

in the camera device entry of the app initializer (see tutorial on initializers below). Acquisition will

now not be limited by storage speed. We do not enable this by default because the added transfer

step can cause slightly more frequent acquisition bugs, so we recommend fast disk storage systems in

general.

4.3.4 Tutorial 1: Initial setup instructions

1. Install prerequisites

(a) Windows 10/11

(b) MATLAB r2021a or later (tested up to r2024a) with the following toolboxes

i. Data Acquisition Toolbox

ii. Image Processing Toolbox

iii. Instrument Control Toolbox

iv. Optimization Toolbox

v. Statistics andMachine Learning Toolbox

(c) Install the Data Acquisition Toolbox Support Package for National Instruments NI-

DAQmxDevices from theMATLAB Add-OnsManager.

(d) Node.js (https://nodejs.org/en/download/). Default Options

(e) Visual Studio Community (visualstudio.microsoft.com) Desktop C++

development.

2. Clone the Luminos repository by running this line in your terminal
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> git clone https://github.com/adamcohenlab/luminos-microscopy.git

3. Build the libraries by running the following command inMATLAB from the Luminos di-

rectory

> build

4. Plug in your NI DAQ or set up a DAQ simulator (https://knowledge.ni.com/Knowl

edgeArticleDetails?id=kA03q000000x0PxCAI&l=en-US) and note the name (You

can use NIMAX to view this easily). e.g., “Dev1”

5. Edit the initializer file

(a) Open Simulator.json (type “edit Simulator.json” in MATLAB) and re-

place all instances of “Dev1” with the name of your DAQ

6. Run the app inMATLAB with the following command

> app = Simulator_App()

7. You should now see a simulated camera with diagonal stripes along with a browser-based

simulator UI. Follow the next tutorial to configure Luminos for your specific hardware.

4.3.5 Tutorial 2: Customizing and initializer for your hardware

1. You will be modifying the Example_App.m and Example.json files for this. You can later

rename the files and appropriate names in the files to any app name you’d like.

2. Open /src/Applications/Example/Example.json in a text editor

3. First, edit the “dataDirectory” field to a directory where you’d like Luminos to save your

data. Luminos will create timestamped subfolders here for each experimental session.
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4. Now edit the “tabs” list with one entry for each tab you want. You’ll need at least “Main”

and “Waveforms”. Other options are “DMD”, “SLM”, “Scanning”, “Lasers”,

“Hadamard”, “SpinningDisk”. (/src/User_Interface/frontend/src/tabs for a

full list). Order does not matter.

5. Now, set up the “DAQ” and “Camera” device entries with the appropriate parameters.

6. Add any other device entries you need, following the examples given in Example.json.

The required parameters for each device can be found in the corresponding initalizer. For in-

stance, if you want to know the parameters you should specify for given deviceType, inspect

the file called <deviceType>_Initializer.m and look at the properties the initializer

expects. A list of supported devices in given in Supplementary Table 1.

7. Add required device drivers.

(a) Since we can’t distribute proprietary device drivers with our code, you’ll have to install

them yourself for any devices that require them (e.g. cameras).

(b) For Hamamatsu cameras, download both DCAM-SDK and DCIMG-SDK (https:

//dcam-api.com/sdk-download/). You’ll need to create a free account. Unzip

both SDKs into /src/lib/Luminos_VS/inc/. You should have the following

folders:

i. /src/lib/Luminos_VS/inc/dcamsdk4

ii. /src/lib/Luminos_VS/inc/dcimgsdk

(c) For Andor cameras, download the appropriate Andor SDK (https://andor.oxin

st.com/downloads/) and unzip into /src/lib/Luminos_VS/inc.

(d) After adding all drivers, recompile the C++ code by running the “build” command in

MATLAB.

79

https://dcam-api.com/sdk-download/
https://dcam-api.com/sdk-download/
https://andor.oxinst.com/downloads/
https://andor.oxinst.com/downloads/


Table 4.2: Currently supported hardware.

Software Requirements
Windows 10/11 withMATLAB r2021a or later

Camera
Hamamatsu (tested on Flash, Fusion)

Andor (tested on iXon)
DAQ

National Instruments (tested on USB, PCIe)
DMD

ALP 4.1, 4.2, 4.3
TI DLP

SLM
Meadlowlark

Scanner
Any analog galvanometric scanner

Filter Wheel
Thorlabs

Optec high speed filter wheel
ASI FW1000

Shutter
Any analog or digital-controlled shutter

Modulator
Gooch &Housego 8-channel AOTF controller

Any analog-controlled modulator
Thorlabs motorized rotation mount with half-wave plate

Motion Control
Sutter MPC200

Scientifica SliceScope
Ludl MAC5000/6000

Thorlabs TCube
Power Meter

Thorlabs PM400
Newport 84x_PE

Laser (software control optional)
OBIS

Hubner
SpectraPhysics DeepSee

Spinning Disk
Andor/Yokogawa

Optical Trap
Any analog galvo-based trap

Optical Parametric Amplifier
Amplitude SystemsMango

Other
Any device compatible with DAQ I/O
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8. Test each device

(a) After adding each device, test by running in standalone device mode. For example, the

camera would be tested with:

i. cam = Standalone_Device(“Example”,”Camera”);

9. Run the full app

(a) After adding and testing devices separately, run the full app with:

i. app = Example_App();

10. View the data

(a) After an acquisition, you should see in your data directory a datestamped subfolder

with a timestampled subfolder for each acquisition.

(b) Within an acquisition folder you should see two files. The video is in frames1.bin,

and the metadata in output_data.mat.

(c) FromMATLAB, you can load the results by running the following command:

i. [mov, avgImg, DeviceData] =

Extract_Mov(“path/to/data_directory”);
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5
Absolute voltage from dual fluorescent

reporters: Theory and experiment

5.1 Introduction

Transmembrane potentials play important roles in neuronal computation, muscle activation, cell

metabolism, and organism development,1,4,5,143,144 but historically these potentials have been dif-
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ficult to measure. Recent progress in genetically encoded voltage indicators38,44,83,117,145 (GEVIs)

has made it possible to map bioelectrical dynamics in cultured cells20,24,146, intact tissues68,78,80,

and live animals2,16–18,22,67,70,77,84,105,147. Yet voltage imaging from GEVIs and conceptually similar

voltage-sensitive dyes has traditionally yielded only relative, rather than absolute, voltage levels.

Two important classes of experiment remain out of reach of relative intensity-based voltage imag-

ing. First are experiments in which absolute voltage levels are compared among cells or subcellular

locations. Both reporter expression and fluorescence background can vary over space, leading to

position-dependent (and a priori unknown) offset and scaling of the relation between fluorescence

and voltage. Second are experiments in which slow voltage dynamics are tracked, e.g., during de-

velopment, during disease progression, or during behavioral state changes in the brain. At these

timescales, the dynamics of protein expression and trafficking become relevant, and cell membranes

can move or change density. These dynamics, too, lead to a time-dependent and (a priori unknown)

offset and scaling of the relation between fluorescence and voltage.

Several methods for absolute voltage imaging have been demonstrated or proposed148, but

these approaches have limitations on speed, sensitivity, or accessibility that prevented their broad

adoption. These methods include fluorescence lifetime measurements60,149,150, measurements of

photocycle dynamics94, two (or more) point drug-induced calibration151, and ratiometric read-

out152,153. Ratiometric calibrations are confounded by differential photobleaching, uneven illu-

mination intensity and varying background and therefore change significantly over time and from

cell to cell.154–156 Drug-induced calibration, while potentially useful in vitro, requires a level of bi-

ological perturbation not compatible with in vivowork. Measurements of photocycle dynamics

require a complex and slow readout and have not been used after their initial publication. Fluores-

cence lifetime imaging (FLIM) perhaps has the most inherent potential for improvement if current

limitations in detection speed could be overcome, but to date, lifetime imaging of absolute voltage

has only been demonstrated with a sensitivity of 10 mV in a 1 s acquisition window, insufficient for
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sampling many interesting biological systems. In addition, unlike intensity readout, FLIM requires

an expensive pulsed laser source, limiting its broader accessibility. A technique for kilohertz-rate life-

time voltage imaging was recently demonstrated,157 but was unable to provide absolute calibration

due to mixing of the sensor lifetime signal with photobleaching background fluorescence.

Here we discuss the mathematical properties and shortcomings of single-indicator intensity-

based voltage imaging. We then analyze experimentally and theoretically the possibility of abso-

lute voltage imaging via two indicators with different slopes to their F vs. V curves. Finally, we ana-

lyze prospects for absolute voltage imaging with one linear-response GEVI and a second nonlinear

GEVI.

5.2 Results

5.2.1 Relation between fluorescence and absolute voltage

Most voltage imaging relies on readout of fluorescence intensity from reporters in the cell mem-

brane. Every such recording encounters two sources of uncertainty. First, there is an unknown

background from out-of-focus sources, light scatter, and in-focus but not voltage-responsive fluo-

rophores; and second there is uncertainty in the overall density of reporters in the membrane. This

situation can be expressed as

F = ag(V) + b (5.1)

where the overall fluorescence of a point, F, is related to the single reporter response curve g(V)

by the unknown scaling and offset a and b. High-resolution imaging, image processing, and opti-

cal sectioning techniques (e.g., confocal, light-sheet, or two-photon microscopy) can partially re-

duce or correct for the unknown offset to the extent to which it is not perfectly co-localized with
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the reporter. The unknown scaling factor, a function of variable reporter expression, folding, and

trafficking and of illumination and imaging conditions, remains unknown, preventing absolute

voltage readout. Consider an indicator, such as Voltron143,44 or the Arch-based GEVIs117, whose

response is approximately linear over the biologically relevant range -100 to +50 mV.We can express

the molecular response curve of the pure GEVI as

g(V) = c(V− V0) (5.2)

withV0 a biophysical constant representing the voltage at which the fluorescence extrapolated

from the linear regime would reach zero. The fluorescence is:

F = a(V− V0) + b. (5.3)

The unknown scaling coefficient, a, includes the effect of the molecular scaling coefficient, c. As

a and b are varied, we obtain a family of possible relations between F andV, among which it is not

possible to determine the correct one without external information.

To convert raw fluorescence to a more useful measure, it is common to choose a baseline condi-

tion, e.g., when the sample is in a resting state, with fluorescence Fbaseline. Assuming constant a and

b, subtracting Fbaseline from each fluorescence measurement yields ΔF = a(V − Vbaseline) that is

insensitive to background. Typically, this measure is then normalized by dividing by Fbaseline, pro-

ducing a measure:

ΔF
F

=
a(V− Vbaseline)

a(Vbaseline − V0) + b
(5.4)

If the background has been removed from Fbaseline, either by optical sectioning or by post acquisi-

tion image processing, then this simplifies to ΔF
F = (V−Vbaseline)

(Vbaseline−V0) , a measure that is insensitive to the
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unknown scaling factor. It is commonly assumed that ΔF
F of a given reporter has a fixed relationship

to voltage across experiments, but this is generally not true. Vbaseline may vary from experiment to

experiment, a and bmay change over the course of an experiment, and the success of background

removal will also vary. We urge caution in any analysis in which even relative amplitudes, rather than

just temporal characteristics, are analyzed.

5.2.2 Calibration by readout from correlated indicators

Here we describe a novel and accessible approach to absolute voltage imaging. Rather than attempt-

ing independent readout at every timepoint as existing methods do, we treat the fluorescence traces

from dual co-expressed indicators as a system of simultaneous equations that can be solved to give

the absolute voltage at each time. We first explore the linear case and show that this does not re-

sult in a unique solution when b is non-negligible. We then describe a novel method by which the

combined fluorescence traces of a linear and a highly nonlinear indicator allow for determination

of absolute voltage. This method, though theoretically sound, is currently limited by the lack of

bright, fast, and sensitive highly nonlinear reporters, which have not to this point been a target for

optimization and screening efforts.

5.2.3 Scenario 1: Dual near-linear indicators

We first consider the linear case with indicators whose fluorescence in the biological voltage range

can be represented as F(t) = a(V(t) − V0) + b. V0 is a fixed biophysical single-reporter prop-

erty that is independent of imaging or expression conditions, but may depend on temperature, pH,

membrane composition, and other physiological variables that may affect the single-molecule re-

sponse. This constant can be determined by a single patch-clamp measurement in a separate ex-

periment and then is known for all future experiments using that reporter in that cell-type under a
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specific set of physiological conditions. Separate calibrations should be performed for different cell

types or significantly different physiological conditions.

In the general case, with k spectrally distinguishable and simultaneously measured reporter types

andN unique voltage values measured over time, the unknown indicator offsets and scaling and

the unknown voltages combine to giveN + 2k unknown parameters and kN equations. Due to

the linearity of the reporters, any voltage trajectory projected into the k-dimensional space of flu-

orescence measurements will result in a line. This means that two separate voltage measurements

are sufficient to fully determine this trajectory and also that no more than two linearly independent

measurements can be taken. In other words, once fluorescence has been recorded at two distinct

voltages, further measurements of fluorescence at different voltages will not provide any additional

information about the system. We can therefore restrict our analysis toN = 2. We can see that, with

2 + 2k unknowns and 2k independent equations, we cannot solve the system in this general linear

case. However, if background is negligible, so that F = a(V(t) − V0), we reduce the number of

unknowns to 2 + kwhile keeping the number of independent observations at 2k. This results in a

solution for k ≥ 2. It is a matter of basic algebra to show that for two linear reporters with negligible

background:

FA(t) = a(V(t)− V0
A); FB(t) = b(V(t)− V0

B) (5.5)

measured at t1, t2, we can express the voltage at t1 as:

V(t1) =
QV0

B − V0
A

Q− 1
(5.6)

whereQ = FA(t1)ΔFB
FB(t1)ΔFA and ΔF = F(t2)− F(t1)

Because standard semi-quantitative voltage imaging does not require precise characterization of

or removal of static background contributions, it was not clear whether this ‘negligible background’
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linear solution might apply to real-world imaging conditions. We therefore collected data from two

modern near-linear GEVIs and designed and tested several variations on an analysis pipeline opti-

mized for background removal and estimation of absolute voltage. This process can be divided into

three major phases: data collection, single-channel signal extraction, and absolute voltage estimation

by combining information from each channel. In the following section we give an overview of each

of these phases, with insight into particular considerations required for absolute voltage imaging,

while leaving details of our implementations for the methods section.

5.2.4 Data collection

In addition to the typical considerations of voltage imaging, three further constraints must be con-

sidered for dual-indicator imaging. First, it is necessary to choose indicators and imaging filters such

that cross-channel crosstalk is minimized. This is particularly important since the fluorescence of

both indicators will be responding to the same underlying signal, and so will be inseparable by sta-

tistical methods. Second, it is necessary to image the reporters simultaneously relative to the voltage

dynamics present in the sample. For samples with slowly varying voltage, it may be sufficient to

perform interleaved time-multiplexed imaging by filter or excitation source switching, while for

samples, such as spiking neurons, with fast voltage dynamics, it would be necessary to perform true

simultaneous imaging either with split-frame dual-wavelength imaging or with synchronized dual-

camera imaging. Third, since the robustness of the solution to noise increases with both the sensitiv-

ity (slope of F-V curve) of each individual indicator and the difference in sensitivity between the two

indicators, it is desirable to choose indicators with significantly different, but large, slopes. These

demands are best met with reporters of opposite response direction, but this is not required by the

method. Unlike ratiometric reporters, whose expression ratios must be kept fixed, there is no fixed

constraint placed on reporter expression ratios, although these ratios may be tuned if desired to pro-

duce similar total signal-to-noise ratios (SNR) from reporters with different per-molecule SNR. To
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test this method, we expressed Quasar6a117, a positively-going GEVI, and Voltron1608, a negatively-

going GEVI on separate plasmids in HEK-293T cells (Fig. 5.1a). Under whole-cell patch clamp, we

applied a series of voltage steps and ramps while imaging in one channel, then immediately repeated

the identical control waveform while imaging in the second channel.

5.2.5 Single-channel signal extraction

In order to perform accurate dual-channel absolute voltage estimation, it is first necessary to sep-

arately extract a high-fidelity representation of each reporter’s fluorescence with photobleaching

and background removed to negligible levels. These are both standard steps in fluorescent voltage

indicator signal processing but must be performed to more stringent standards for absolute voltage

imaging. Photobleaching is generally fit with an exponential, which once fit can be used to compen-

sate fluorescence back to a flat baseline. We note that if illumination intensity is not constant across

the field of view, photobleaching rates can vary across the sample, requiring separate photobleaching

corrections for different pixels or image regions. For voltage dynamics with roughly symmetric vari-

ation from the mean, a simple exponential fit can provide good photobleaching correction, while for

asymmetric voltage dynamics it may be appropriate to use a more customized fit method (Fig. 5.1b).

Background subtraction begins with subtraction of camera sensor dark counts, followed by sub-

traction of low-spatial-frequency components due to scattering and out-of-focus sources. In the case

of two-dimensional surface-adhered cultured cells, out-of-focus sources are not a problem, so this

could be achieved by capturing the fluorescence trace from a cell-free region adjacent to the cell of

interest and subtracting this from the signal trace. There exist more complex procedures for general

compensation for scattering and out-of-focus background.137

One type of background fluorescence that resists separation from signal is that arising from in-

sensitive fluorophores spatially co-located with the sensitive reporters. Such background could re-

sult from other fluorophores in the membrane or frommisfolded or otherwise blocked reporters
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Figure 5.1: a) Image of the Quasar6a and Voltron1608 channels of a whole‐cell patch‐clamped HEK‐293T cell expressing
Quasar6a and Voltron1608. b) Raw Voltron1608 fluorescence (blue) and photobleaching‐corrected trace (yellow) from
cell in (a) under voltage step and ramp stimulus. c) A map of correlation‐based pixel weights used for signal extraction
in the Voltron1608 channel. Several bright agglomerates visible in (a) have low weights, indicating that these pixels con‐
tain insensitive background and have been removed from the analysis. d) Extracted Voltron1608 signal (orange) overlaid
on the control voltage waveform (blue). Only the triangle wave portion is used for further analysis. e) After the signal
extraction steps in (a‐d) have been performed on both indicators, we have two highly correlated fluorescence traces.
f) Calibrated voltage traces predicted from the Quasar (blue) and Voltron1 (orange) fluorescence at the optimal solu‐
tion at which the root‐mean‐squared distance (RMS) between the two predictions is minimized. The actual voltage is in
black. The Voltron1 fluorescence trace has a higher SNR, so its prediction is taken as the best prediction. The calibrated
Voltron1 trace has a systematic offset of 0.07 mV, an RMS error of 3.6 mV, and a scaling error of 0.8%. g) As a control,
the fluorescence traces were separately fit to the known control voltage with a least‐squares linear fit. The resulting
traces are nearly identical to the results obtained via calibration without knowledge of the voltage (except to deter‐
mineV0). The linearly fit Voltron1 trace has a systematic offset of ‐0.06 mV, an RMS error of 3.6 mV, and a difference
of standard deviation of 0.8% from that of the known voltage. h) Histogram ofV0 estimates from 1% of pixels from
Voltron1608 recording with highest voltage sensitivity. The distribution has a standard deviation of 180 mV. i) Systematic
error resulting from a 10 mV perturbation in theV0 estimate for Quasar6a. The predicted trace now has an offset of 10
mV.

in the membrane (e.g., Voltron1 with no retinal bound in the opsin core). In certain cases where

such background is present in only a subset of membrane-pixels, it may still be possible to remove
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it. Here, we use a previously described weighting method41 to select the most sensitive (lowest back-

ground) pixels (Fig. 5.1c,d).

5.2.6 Estimating Absolute Voltage

While the explicit two-point linear solution described above can be extended into a many-point so-

lution, we found that in practice a solution based on numerical optimization is more robust to the

noise present in fluorescence traces. This optimization relies on the insight that the families of possi-

ble voltage solutions resulting from the two fluorescence channels coincide only at a single point in

solution space, which is the absolute voltage solution to the system. Minimizing the error between

the voltage predictions generated by the two channels over the space of possible scaling coefficients

therefore provides a solution to the system that is robust to noise in the traces. On a calibration

dataset (Fig. 5.1e) in which the background was assumed to be negligible and the effectiveV0 was

determined from the calibration data itself, this optimization produced a solution with a systematic

offset error of < 0.1 mV, a systematic scaling error of <1%, and a root-mean-squared (RMS) error

of <4 mV (Fig. 5.1f). This optimized solution is as good on all measures as a solution derived by

fitting the fluorescence traces to the known voltage (Fig. 5.1g), indicating that remaining error is

attributable to noise in the fluorescent traces.

In order to perform this analysis, theV0 of each indicator must be known beforehand to a high

level of precision, as error inV0 propagates to an error of comparable absolute magnitude in esti-

mated voltage. These values should be constant across cells and samples (although there may be

some variation between cell types due to different membrane compositions and/or cytoplasm ionic

composition) and can therefore be determined in separate calibration experiments. In real sam-

ples, though, we found that best estimates ofV0 vary widely between, and even within cells (Fig.

5.1h). This is likely the result of uncorrected background, as nonzero background appears in the

fluorescence-voltage relation as F = a(V− (V0− b
a)), where the intercept of the F vs V curve on the
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x axis will beV0
eff = V0 − b

a . For a reporter with aV
0 of ±1000 mV, an uncorrected 1% background

contribution will perturbV0
eff, and therefore estimated voltage, by∼10 mV (Fig. 5.1i). This leaves

the dual-linear reporter method under-constrained, and leads us to propose a second, more robust

technique that, while closely related to the first, is robust to non-negligible background.

5.2.7 Scenario 2: Combined near-linear and highly nonlinear indicators

The dual linear indicator approach fails because the low dimensionality of the fluorescence readout

does not provide sufficient information to fix a unique solution when both arbitrary scaling and

background are present. For every affine transformation of the fluorescence axis that transforms a

linear voltage indicator response, we can find an affine transformation of the voltage axis that has ex-

actly the same effect on the line, preventing us from assigning a unique calibration. This is not true

for nonlinear indicators. If we replace one of the near-linear indicators with a highly nonlinear indi-

cator, such as FlaSh158, the trajectory in F-F space no longer falls on a line and can therefore provide

enough information to solve the system for absolute voltage. A sigmoidal nonlinear response has

certain features that are invariant to affine transformations of the fluorescence axis (e.g., inflection

point and points of maximum curvature). We can therefore use these features to provide a calibra-

tion that is robust to arbitrary scaling and background.

The first two steps of this pipeline are nearly identical to the data collection and single-channel

signal extraction steps of the dual linear indicator pipeline. While the requirements for the linear

indicator are similar to those described above (linearity, sensitivity, avoidance of crosstalk, etc.), there

are important additional considerations in the choice of the nonlinear indicator that may lead to

different indicators being appropriate for different experiments. Not only are the overall brightness,

sensitivity, and speed of the indicator important, but it is also necessary to match the horizontal

scale and position of the nonlinearity to the voltage dynamics explored during the experiment. A

nonlinearity that is too broad relative to the sampled voltage will appear linear within the sampled
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domain, reverting to the linear case described above, while a nonlinearity that is too narrow will

be sampled as a step function with all of the nonlinearity condensed to a single point, insufficient

for calibration of both scaling and offset throughout the sampled voltage range. While removing

background is not as critical as in the linear case, it is still good practice to remove as much noise,

including background, as feasible before attempting absolute voltage estimation.

To test this method, we found an indicator, FlaSh158, that has what appears to be an ideally-

situated nonlinearity for measurements spanning -70 to 0 mV. The nonlinearity is centered on -

40 mV and saturates about 20 mV from the inflection point. Unfortunately, we found that FlaSh

does not traffic properly in HEK-293T cells and were unable to perform recordings. This is con-

sistent with reports of poor mammalian expression and trafficking of FlaSh variants.159 We there-

fore generated a simulated nonlinear trace by applying a FlaSh-like nonlinearity (Fig. 5.2a) to the

Voltron1608 traces recorded earlier. We added scaled random noise and then applied our algorithm

to the simulated nonlinear trace together with the original linear trace (Fig. 5.2b).

5.2.8 Estimating Absolute Voltage

Before a nonlinear indicator can be used for absolute voltage estimation, a calibration must be per-

formed to obtain the shape of the indicator’s F-V relationship (Fig. 5.2a). Typically, such a curve is

obtained and reported during initial development of a voltage reporter, so it should not be necessary

to repeat the calibration unless working in a cell type with significantly different membrane or ionic

composition than that used in previous characterizations. No calibration is necessary for the linear

indicator.

An absolute voltage readout can be performed from a linear/nonlinear pair of arbitrarily scaled

and offset fluorescence traces as follows. Using the linear indicator fluorescence as the x axis and the

nonlinear indicator fluorescence as the y axis, a scatterplot of all recorded timepoints from a single

electrically compact unit is made (Fig. 5.2c). The known shape of the nonlinear indicator response
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Figure 5.2: a) A simulated calibration for a nonlinear indicator with steep nonlinearity around ‐40 mV (dashed line) and
high sensitivity. b) Experimental linear fluorescence from Voltron1608 (left axis, see Fig. 5.1e) and simulated nonlinear
fluorescence (right axis). Nonlinear fluorescence was generated by nonlinearly transforming the experimental linear flu‐
orescence, then adding random noise scaled with the square root of the transformed signal. c) Scatter plot of nonlinear
versus linear fluorescence at each time point. The sigmoidal calibration curve for the indicator from panel (a) is then fit
to the scatterplot (fit inflection point dashed line), producing a calibration between the linear fluorescence and the abso‐
lute voltage. d) Resulting calibrated voltage trace (orange) compared to the actual control voltage (black). The calibrated
Voltron1 trace has a systematic offset of ‐0.4 mV, an RMS error of 3.7 mV, and a scaling error of 1.1%. e) As a control,
the linear fluorescence trace was fit to the known control voltage with a least‐squares linear fit. The resulting trace (or‐
ange) is shown with the true control voltage (black) and is similar to the results of the nonlinear calibration performed
without any knowledge of voltage. The linearly fit Voltron1 trace has a systematic offset of ‐0.06 mV, an RMS error of
3.6 mV, and a scaling error of 0.8%.
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curve is fit to these data by allowing arbitrary scaling and offset in both dimensions. The optimal

scaling and offset parameters for the linear indicator fluorescence (x) axis, if inverted, provide a map-

ping of the fluorescence of the linear indicator back to voltage on an absolute scale. The end result

is a trace whose shape and high-frequency components are derived from a single fluorescent voltage

indicator, as in standard voltage imaging, but whose absolute position and scaling on the voltage axis

are determined from calibration by the nonlinear indicator (Fig. 5.2d).

Applying this algorithm to our partially simulated data produced a solution with a systematic off-

set error of < 0.5 mV, a systematic scaling error of <2%, and an RMS error of <4 mV (Fig. 5.2d).

This optimized solution is similar to a solution derived by fitting the fluorescence traces to the

known voltage (Fig. 5.2e), with slightly worse offset and scaling errors, indicating that most of the

remaining error is attributable to noise in the fluorescent traces.

This summary assumes that the scaling factors and background are constant over time. If these

components do vary over the course of a recording (e.g., in imaging of growing cells in developing

embryos), it would be simple to divide the full recording into blocks, within which separate cali-

bration fits are performed and interpolated while maintaining complete continuity in the resulting

trace. The only restriction is that calibration requires sufficient sampling of the nonlinearity to per-

form a fit. Blocks in which voltage does not vary sufficiently can have their calibration interpolated

frommore active surrounding regions.

A variation of this method could be applied even to cells which do not exhibit voltage dynamics.

By co-expressing an optogenetic channelrhodopsin actuator, one could periodically apply a brief

light stimulus to force the cell to sample a sufficient range of voltage to perform the absolute voltage

calibration. This would enable absolute determination of the resting voltage of electrically inactive

cells with only sparse periods of disruption.

While we were able to perform simulations based on nonlinearly transformed experimental data

from a linear indicator, we were not able to fully demonstrate this nonlinear calibration method
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due to inadequate performance of existing nonlinear indicators. We found that the fast, bright, and

sensitive reporters such as Voltron1 and ASAP that have resulted from extensive optimization ef-

forts are too linear for such calibration, while older more nonlinear reporters such as FlaSh do not

provide the signal-to-noise ratio necessary for robust imaging in mammalian cells. The Butterfly74

GEVI shows desirable nonlinearity, sensitivity, and speed but relies on FRET between two fluores-

cent proteins, spectrally ruling out their use with a second fluorescent voltage reporter.

5.3 Discussion

Previously described methods for absolute voltage imaging have attempted to calibrate fluorescence

traces on a point-by-point basis or by a separate and disruptive calibration step. We propose com-

bining a near-linear voltage indicator with a highly nonlinear indicator selected for the voltage range

under consideration. By considering the entire pair of fluorescence traces as a system of equations,

a more robust estimation of absolute voltage may be performed. Unlike previously proposed ra-

tiometric techniques, our method does not require fixed expression ratios and is not affected by

differential photobleaching. Additional instrumentation complexity is minimal, as simultaneous

two-channel imaging can be implemented in a straightforward manner by temporal multiplexing,

spatial multiplexing over a single camera sensor, or dual-camera imaging.

One limitation of this technique is that the measured voltage must sample the range of the non-

linearity on a timescale faster than photobleaching, uncorrected sample motion, or changes to the

scaling coefficient or background. This is likely not a problem for highly-active neurons, but could

prevent calibration in silent neurons or in systems like developing embryos in which voltage changes

are slow and subtle. One option in these cases would be to introduce intermittent voltage pertur-

bations, whether optogenetically or pharmacologically, to force the system to sample a range of

voltages at sparse intervals. This might be acceptable in some systems, but could cause unwanted
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perturbation in others. For very slowly-varying voltages, fluorescence lifetime imaging-based tech-

niques may be a better solution for absolute voltage imaging.

We were prevented from an experimental demonstration of this technique by a lack of suitable

bright and sensitive nonlinear voltage indicators. We suspect that this lack is due not to any inher-

ent difficulty in developing or discovering such reporters, but due to a bias towards developing

and publishing reporters with higher linearity due to their more faithful reporting of the shape of

voltage dynamics in standard semiquantitative voltage imaging. Although voltage indicator develop-

ment is by no means an easy process, the vast improvements in linear voltage reporters over the past

decade give us reason to believe that the development of nonlinear indicators suitable for absolute

voltage imaging is well within the capabilities of the research community. In fact, we cannot dis-

count the possibility that such an indicator has already been discovered but has not been optimized

or published due to its unsuitability for standard relative voltage imaging. We hope that by publish-

ing this work at an early stage we may encourage effort to be put into developing, improving, and

sharing nonlinear indicators that may have been previously seen as unsuitable for voltage imaging.

5.4 Methods

5.4.1 Genetic constructs

Voltron1 plasmid was obtained from Addgene (#119033). The Voltron1 sequence was cloned into

a lentiviral backbone with a CMV promoter using standard Gibson Assembly. Briefly, the vector

was linearized by double digestion using restriction enzymes (New England Biolabs). DNA frag-

ments were generated by PCR amplification and then fused with the backbones using NEBuilder

HiFi DNA assembly kit (New England Biolabs). Resulting plasmids were verified by sequencing

(GeneWiz). The Quasar6a plasmid is Addgene #178822.
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5.4.2 HEK cell culture

HEK293T cells were maintained in tissue culture-treated culture dishes (Corning) at 37 °C, 5%

CO2 in Dulbecco’s Modified Eagle Medium supplemented with 10% fetal bovine serum, 1%

GlutaMax-I, penicillin (100 U/mL), streptomycin (100 mg/mL). For each imaging experiment, cells

in one 35 mm dish were transiently transfected with both Voltron1 and Quasar6a using TransIT-

293 lipofection reagent (Mirus Bio). For lipofection, plasmids were combined and then diluted with

empty pUC19 vector (New England Biolabs) to a final ratio of 1:1:3 Quasar6a:Voltron1:pUC19

by mass and then transfected with 7.5 µL of TransIT-293 and 2.5 µg of DNA. Cells were replated

36-60 hours after transfection on glass-bottomed dishes (Cellvis, Cat. # D35-14-1.5-N) that were

previously coated in poly-D-lysine to aid in cell adhesion.

5.4.3 Electrophysiology and Buffers

Half an hour prior to imaging, JF608-HaloTag ligand dye was added to the medium in each dish of

cells to a final concentration of 100 nM. Immediately prior to imaging, the medium was removed,

and the cells were rinsed, then covered with dye-free extracellular (XC) buffer. The XC buffer con-

tained 125 mMNaCl, 2.5 mMKCl, 3 mMCaCl2, 1mMMgCl2, 15 mMHEPES, 20 mM glu-

cose, which was adjusted with NaOH to a pH of 7.3 and with sucrose to an osmolality of 305-

310 mOsm, as measured by a vapor-pressure osmometer (Wescor). Filamented patch pipettes were

pulled using an automated puller (Sutter P-1000) to a tip resistance of 6 MΩ and were filled with

an intracellular buffer (IC) containing (in mM) 6 NaCl, 130 K-aspartate, 2 MgCl2, 5 CaCl2, 11

EGTA, and 10 HEPES, with pH adjusted to 7.2 by KOH.Whole-cell voltage clamp was acquired

using a modified syringe to manipulate pressure, following Li.100
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5.4.4 Microscope and illumination control

One-photon (1P) imaging experiments were performed on a custom-built inverted microscope

with a computer-controlled patch amplifier (Axon Instruments, Multiclamp 700B). Once a whole-

cell patch was established, acquisition was controlled using customMATLAB/C++ acquisition

software (https://www.luminosmicroscopy.com/, chapter 4). The illumination

path contained a 594 nm laser (Hübner Photonics, Cobolt Mambo) and a 635 nm laser (Dragon

Lasers). Imaging was performed through a high-NA 60x water-immersion objective (Olympus

UPLSAPO60XW, 0.28 mmworking distance, NA = 1.2) onto an sCMOS camera (Hamamatsu,

ORCA-Flash 4.0). Imaging of was performed through a 50:50 beam splitting prism instead of a

dichroic to avoid disturbing the patch while changing dichroics. A 594 nm long-pass emission fil-

ter (Semrock, BLP01-594R-25) and a 700 nm long-pass emission filter (Thorlabs) were used for

Voltron1608 and Quasar6a imaging, respectively. Electrical waveforms and measurements were

transduced through a computer-controlled data acquisition device (National Instruments, PCIe-

6343). The sample was placed on a 2-axis motorized stage (Ludl Electronic Products, MAC6000),

and a 3-axis micromanipulator was used for patch pipette control (Sutter, MP-285).

5.4.5 Analysis: Signal extraction

Analyses were performed using customMATLAB code. Analysis of recorded fluorescence videos

began with background subtraction by subtraction of a cell-adjacent region of interest (ROI). Pho-

tobleaching correction was performed in two steps. First, a biexponential decay was fit to the lower

(Quasar6a) or upper (Voltron1) hull of the entire averaged cell ROI trace. This accounts for the

asymmetric voltage deviations of our waveform. Afterwards, this global biexponential was individu-

ally scaled and applied to each pixel’s trace to account for differential rates of photobleaching across

a field of view. Bleaching appeared to affect mainly the non-voltage-sensitive background, decreas-
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ing overall fluorescence without affecting the absolute magnitude of fluorescent response to voltage.

We therefore applied the photobleaching correction additively.

Signal extraction used a previously described pixel-weighting technique.41 Briefly, the whole

cell ROI trace was assumed to correlate well with voltage. The correlation of each individual pixel

to this trace was calculated, with more highly correlated pixels representing more voltage-sensitive

pixels. The final weights were calculated by weighting the correlations according to the residual

pixel noise level to emphasize lower-noise pixels. The final cell fluorescence trace was calculated by

applying these weights to each frame of the recorded video.

5.4.6 Analysis: Linear voltage estimationwith negligible background

Our analysis of voltage estimation from two linear indicators posits that the parameterV0 is con-

stant between cells and recording setups. In the negligible background case, this parameter is found

by extrapolating the F vsV relationship to zero fluorescence. We calculatedV0 for each indicator

and cell with a linear fit of fluorescence to the known control voltage. This is the only way in which

we use the known control voltage during the entire analysis. In order to show the variation ofV0

among pixels, we linearly fit each pixel to the control voltage to find the intercept, then selected the

1% of pixels with the highest weights (see section on signal extraction) and plotted a histogram of

theV0 of these pixels. We did not use these pixelwiseV0 for further analysis.

We found that a numerical optimization algorithm gave more robust results than voltage estima-

tion using the closed form solution. For each indicator, i, a given trial scaling factor, ai, will predict

a voltage trace with a certain offset and scaling. For zero-noise fluorescence traces, there is a unique

solution of a1, a2 for which the predicted voltage traces,V1(t),V2(t), are identical, with the same

offset and scaling. We therefore used the MATLAB global optimization toolbox pattern search op-

timizer to minimize the difference between the two voltage traces predicted on the space of possible

scaling coefficients. Mathematically, the objective function was the temporal mean of the squared
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difference between the two predicted traces, with the traces first normalized to the total range of the

combined traces. Normalization was necessary to prevent the objective from simply minimizing the

scale of the traces. The only constraints were on the sign of the scaling factors, consistent with the

known direction of each reporter’s response. Pattern search converged on a solution within twenty-

six iterations. The total offset of the final solution was calculated as the difference between the mean

of the predicted voltage and the mean of the true voltage. Total scaling error was calculated as the

relative difference between the standard deviation of the predicted voltage and the true voltage. In

order to test the robustness of the estimation to variation inV0, we manually added an offset of 10

mV to theV0 estimate for Quasar6a. This resulted in a shift of the estimated voltage by∼10 mV

(Fig. 5.1i).

5.4.7 Analysis: Nonlinear voltage estimation simulation

We began with the same Voltron1 fluorescence trace used for linear voltage estimation. In order to

generate a simulated nonlinear trace, we first back-calculated a noisy voltage trace using a linear fit of

the Voltron1 fluorescence to the known voltage. We generated a sigmoidal nonlinearity with inflec-

tion point at -40 mV and slope of 0.2 based approximately on the response of FlaSh and applied this

nonlinearity to the noisy voltage trace. We scaled the result so that its maximum value matched the

maximum fluorescence of the original data. In order to remove spurious correlations with the orig-

inal linear trace, we applied to each timepoint of the simulated trace additive Gaussian noise with a

standard deviation of half of the square root of the simulated value (the weighted average traces do

not represent real photon count numbers, so exact Poisson noise would be inappropriate).

Fitting of the sigmoid to the data was performed using MATLAB’s curve fitting toolbox. A sig-

moid of form FNL = A
1+eB(FL−I) + Owas fit to the paired fluorescence traces on the space of A, B, I,

O. The predicted voltage was then calculated asVpred = IV + B
BV (FL − I), where IV and BV are the

known inflection point and slope of the indicator’s calibration curve on an absolute voltage abscissa.
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Fit error was calculated in the same way as for the linear solution.
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6
Conclusion

This dissertation expands the quality and availability of tools for robust biological voltage imaging,

with a focus on applications in the brain. While each chapter of this dissertation pursued a partic-

ular problem in the voltage imaging field, the greater thread that ties these chapters together is the

aim of improving the quality and ease of use of voltage imaging tools to the point at which neuro-

scientists (and other biologists) will be able routinely to apply voltage imaging to their problems of

interest, making scientific discoveries that are out of reach of other techniques.
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In chapter one, I motivated this work by comparing the current state of the field to the simi-

lar field of neural calcium imaging and described three shortcomings that I would address in the

following chapters. In chapter two, I addressed the first of these shortcomings by discovering the

mechanism of loss of sensitivity of rhodopsin-based indicators under two-photon conditions and

demonstrating successful in vivo two-photon imaging with an indicator that had previously resisted

efforts at two-photon imaging. In chapter three, I discussed in depth the unique optical constraints

on two-photon voltage imaging in order to provide a framework for design of optimal sensors and

microscopes. In chapter four, I presented an open-source microscope control software package that

is designed to make optical electrophysiology instrumentation accessible to a wider audience. In

chapter five, I studied the possibility of calibrating intensity-based fluorescent voltage sensors by us-

ing a combination of two indicators. In this final chapter, I will discuss some of the implications,

limitations, and future directions of this work, with focus on biologists, GEVI developers, and de-

velopers of voltage imaging instrumentation.

6.1 Implications for the biologist

A biologist should be cautious but optimistic in light of this work. Cautious because the optical

limitations on two-photon voltage imaging set out in chapter three may prevent voltage imaging

from fulfilling naïve expectations carried over from calcium imaging. Imaging of fast changes in

voltage that are localized to cell membranes is inherently more difficult than imaging of slower sig-

nals that can be transduced through the volume of a cell. Voltage imaging will therefore likely always

require greater effort or expense for a comparable number of measured cells. As we described, it will

also face tighter biophysical limits on the number of cells measured. We also caution voltage imaging

users to understand the effect of illumination intensity on reporter sensitivity, based on our discov-

eries in chapter two. Reporters used in intensity regimes significantly different from those under
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which they were characterized may have significantly different sensitivity curves.

With that healthy bit of caution, a biologist should be excited about the field. Within the con-

straints explored in chapter three, there is still much room for improvement. Some possible avenues

touched on in this dissertation involve decreasing laser repetition rate, improving targeting effi-

ciency, and developing better methods for signal extraction. In addition, a biologist can look for-

ward to high performance fast rhodopsin GEVIs for two-photon imaging based on the discoveries

presented in chapter two, and to an easily applied technique for absolute voltage imaging based on

the theoretical analysis in chapter five, once appropriate nonlinear indicators are published. Finally,

a biologist desiring to perform high-speed optical electrophysiology in the lab need not create com-

plicated custom instrumentation control code but can download and use the open-source modular

control software presented in chapter four. The most significant remaining barrier is the lack of

commercial hardware solutions for voltage imaging at this time. A biologist wishing to perform

voltage imaging beyond very simple experiments will likely need a highly modified or fully custom

microscope.

6.2 Implications for the GEVI developer

The central aim of the research presented in chapter two was to demonstrate two-photon imaging

of a fast opsin-based GEVI in vivo. We achieved this aim, but the photophysical discoveries that

enabled this success may have more long-term impact. First, our finding that Voltron sensitivity de-

pends on illumination intensity prompts us to urge GEVI developers to publish sensitivities at a

range of illumination intensities. Second, our results open avenues for development of improved

two-photon rhodopsin GEVIs. Voltron2 was developed based on its optimal performance under

one-photon excitation, which does not imply optimal performance under two-photon conditions.

A better two-photon indicator could possibly be generated using a targeted screen or design process.
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Given the high dimensionality of two-photon excitation parameters, however, such a screen would

require either some starting point or a photophysical understanding of rhodopsin-GEVI sensitivity

under two-photon conditions. Our results provide both an initial starting point (Voltron2608 under

1 kHz scanning 1135 nm excitation) and a photophysical understanding of how sensitivity emerges

in a rhodopsin indicator. We expect that future engineering or selection efforts to improve dye and

retinal spectral overlap, decrease relaxation to the voltage insensitive state, or tune two-photon volt-

age sensitivity into the range of a standard titanium-doped sapphire (Ti:Sapph) laser could yield

significantly better two-photon voltage indicators.

Other chapters should also inform the work of GEVI developers. The scaling laws developed in

chapter three suggest that improvements in GEVI sensitivity would have a large impact on voltage

imaging performance. Improvements in photostability, by dye160,161 or fluorescent protein162 en-

gineering, would also have a large impact on performance by increasing the pulse energy threshold

for sensors that are photobleaching-limited. Our discussion of kinetics suggests that development

of indicators for neural spike detection should focus on improving the speed of response to posi-

tive voltage changes and that speed of response to re-polarization should be left just fast enough to

avoid overlap of subsequent spike responses. Finally, our theoretical exploration of absolute volt-

age sensing in chapter five gives a new importance to nonlinear voltage indicators. We would urge

GEVI developers not to discard indicators solely because of poor linearity. In fact, a spectrally di-

verse library of fast and sensitive GEVIs with nonlinearities of different slopes and offsets would be a

powerful tool for absolute voltage imaging of different biological signals.

6.3 Implications for the instrumentation developer

The several chapters of this dissertation present specific opportunities, a set of guideposts, and a

general challenge to developers of voltage imaging instrumentation. The demonstration of in vivo
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two-photon imaging with Voltron2608 invites development of two-photon microscopes tailored

to the spectral and temporal requirements we discuss in that chapter. In particular, the 1135 nm

pulsed excitation source we used is outside the wavelength range provide by most commercially

available tunable-wavelength Ti:Sapph and fixed-wavelength fiber lasers.163,164 Development of

lower cost pulsed lasers capable of 1135 nm operation would allow broader adoption of the tech-

nique. In addition, our model suggests that interleaving orange (594 nm) photoactivation light with

periods of two-photon excitation could enable voltage-sensitive imaging with a shorter-wavelength

femtosecond laser. While we did not experimentally test this hypothesis, it would be a promising

avenue for further research, accompanied by design of a microscope with built-in capabilities for in-

terleaved one and two-photon excitation. A third specific opportunity is the design of two-photon

imaging systems that provide high duty cycle illumination, minimizing the time between pulses

when sensors are allowed to decay back to the voltage insensitive state. This could be accomplished

either by efficiently-targeted point scanning to minimize off-target time or by scanless techniques68

that allow revisit of each point at the laser repetition rate, though such scanless techniques may opti-

cally less efficient, as discussed in chapter three.

Chapter three provides a set of guideposts for voltage imaging instrumentation development.

Our goal is not to argue for any specific ideal implementation, but rather to present the limits that

any technique must face and the tradeoffs that must be made when optimizing for different per-

formance parameters. Certain limits (e.g., the photon shot noise limit) are fundamental; the in-

strumentation developer’s goal should not be to overcome such limits, but to come as close to the

theoretical limit as practically possible given all other constraints. Other limits (e.g., point scan-

ning speed, laser repetition rate) are not absolute; a microscope that could provide repetition-rate

scanning of arbitrary points in a field of view would bring the field significantly closer to ideal two-

photon imaging. Our discussion centered on optical constraints. These are of course not the only

constraints. Besides the engineering constraints of available laser repetition rates and scanning
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speeds, in vivo imaging also faces noise frommotion and blood flow. While point-scanning is the

optimal technique under hypothetical ideal shot-noise-limited conditions, a different technique

may be optimal under any given set of real-world conditions. Any implementation will face the same

fundamental limits and tradeoffs that we describe, and we believe that the comprehensive treatment

we provide in chapter 3 will be a useful reference for those working on all types of voltage imaging

microscopes.

Chapter four presents an accessible software package for voltage imaging microscope control.

This software is only half of the solution. This dissertation challenges instrumentation developers

to develop and disseminate, either commercially or open source, user-friendly microscope hardware

for voltage imaging. While published implementations of high-speed microscopes suitable for volt-

age imaging abound,38,63–71,110, recreating one of these microscopes typically requires significant

optical expertise, to the extent that other instrumentation-development labs are hesitant to attempt

to implement some of the more complex designs. Even a more basic microscope for one-photon

voltage imaging requires components, such as micromirror patterning devices, that significantly

complicate optical design and may put a self-build of a voltage imaging microscope out of reach of

many neuroscience labs. Given the Luminos control software we present in chapter four, we be-

lieve that design, implementation, and distribution of a one-photon voltage imaging microscope

with patterned illumination is within the reach of the field, and that an equivalent system designed

for two-photon voltage imaging will likely be feasible within a slightly longer time window. We

encourage instrumentation developers to focus now on designs that have potential for broader dis-

tribution, and to work with industry experts to make those designs available to labs that are eager to

obtain ready-made voltage imaging microscopes.

The software presented in chapter four is not the product of trained software developers. Nor

was it released only after attaining a completely stable state. We have been using this software inter-

nally on seven custommicroscopes in our lab, with development going back to 2020. While there
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are still known bugs and instabilities, we believe that Luminos is likely to provide an easier entry and

more robust function than any alternative solution short of professional custom code now available

for highly synchronized complex acquisition. We have released it publicly with two goals in mind.

First, we hope that releasing this code now will encourage a significant part of the voltage imag-

ing field to coalesce around a standardized system for recording and saving voltage imaging data.

This would allow consistent sets of experimental metadata to be stored, and would enable standard-

ized analysis and data archiving solutions to be developed later so that voltage imaging data can be

usefully shared between labs using online repositories such as the BRAIN Initiative DANDI165

archive. Second, we hope the quality and capabilities of Luminos will be increased by the feedback

and code contributions of our users. We encourage any interested developers or neuroscientists to

download, test, and contribute to Luminos, and to contact us with any feedback.

6.4 Conclusion

The voltage imaging field is exciting at all levels, combining cutting-edge protein and small-molecule

engineering, cutting-edge optical design, and cutting-edge biology. This dissertation has focused

on methods and tool development but offers relevant information to those engaged in all aspects

of the field. I hope that this work may play a small part at least in enabling fascinating discoveries in

neuroscience and biology using the tools and insights I have presented.
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A
Supplemental Information for Chapter 3

A.1 Scaling of measurable cells with brightness and voltage sensitivity

Here we derive the dependence of the number of measurable cells on illumination intensity, flu-

orophore brightness, spike ΔF/F, measurement bandwidth, and target SNR (Eq. 3.2 in the main

text). We assume a point-scanning 2P illumination system which has perfect targeting to cell mem-

branes, and which can jump between cells with zero delay. This is a best-case scenario: motion ar-
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tifacts, imperfect targeting, and scanner inertia or finite slew rates further degrade the SNR.We

also assume a perfect camera, which converts impinging photons to detected counts with 100% ef-

ficiency. In order to derive limits on SNR from real-world measurements, we convert the recorded

digitized count rate produced by our camera to the number of impinging photons by dividing by

the quantum efficiency (QE =∼67% @ 525 nm) and multiplying by the conversion factor (CF =

0.46 photoelectrons/digital count) of our camera. Let F (counts/s) be the rate of photons collected

by a perfect detector from a single cell, let P (W) be the laser power at the focus. We define the con-

stant for GEVI brightness, A, empirically as the proportionality between squared laser power and

fluorescence signal.

F = A · P2, (A.1)

where we have assumed that P is changed by adjusting total laser power, keeping laser repetition

rate, pulse width, and focal and scan parameters constant.

The number of photons collected during a spike of duration τ is:

Nphotons = A · P2 · τ · φ, (A.2)

where φ is the fraction of the time that the laser focus intersects the cell membrane. Let β be the

fractional change in fluorescence (ΔF/F) during a spike. If there is a contribution to the fluorescence

from voltage-insensitive background, then βmay be smaller than in the background-free case. The

signal is:

S = β ·Nphotons = β · A · P2 · τ · φ (A.3)

Assuming that the voltage change does not substantially affect the shot noise (i.e. |β| ≪ 1), then
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the shot noise is:

Noise =
√

Nphotons =
√

A · P2 · τ · φ. (A.4)

Thus,

SNR =
β ·Nphotons√

Nphotons
= β · P ·

√
A · τ · φ (A.5)

This SNR calculation is applicable only when the laser is targeted to a single cell. If the laser se-

quentially visitsN cells, then the duty cycle on each cell is 1/N. Assuming zero transit time between

cells, the number of photons collected per cell scales inversely with the number of cells:

Nphotons =
A · P2 · τ · φ

N2P
cells

. (A.6)

Therefore,

SNR = β · P ·
√

A · τ · φ
N2P

cells
, (A.7)

and

N2P
cells =

A · τ · P2 · β2 · φ
SNR2 . (A.8)

Equation A.8 shows the strong dependence of the number of measurable cells on the voltage sen-

sitivity, β. The proportionality of SNR and laser power for a single cell holds true for non-scanning

excitation modalities as well.68
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A.2 Scaling of SNRwith on and off kinetics

We use the model shown in Fig. 3.4a. We calculate the endpoint, β, and the area under the rising

edge,Ron, of the response to a stimulus of length t using a reporter with steady-state response, M,

and on and off time constants of τon and τoff.

β = M
(
1− e−t/τon

)
.

Ron = M
∫ t

0
1− e−T/τondT = M

(
t− τon

(
1− e−t/τon

))
.

Similarly, we integrate the full area under the decaying response after the cessation of stimulus.

We calculate the integral over the full half-space as the upper bound on response signal.

ΔFoff
F

(T) = βe−T/τoff .

Roff = β
∫ ∞

0
e−T/τoffdT = βτoff = Mτoff

(
1− e−t/τon

)
.

The total response, R, is the sum of these two parts:

R = M
(
t+
(
τoff − τon

) (
1− e−t/τon

))
.

To express SNR, we recognize that R takes the place of β · τ in Eq. A.3.

S = β · τ · A · P2 · φ = R · F · φ.

We also set the total integration time, τ, in Eq. A.4 to be t+ τoff
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Noise =
√
A · P2 · τ · φ =

√
F · φ

(
t+ τoff

)
.

We combine to get:

SNR =
RFφ√

Fφ
(
t+ τoff

) .

A.3 Theoretical comparison of 1P vs 2P photon efficiencies

We use the properties of JEDI-2P as an exemplary GEVI which works under both 1P and 2P excita-

tion. We assume that the 1P and 2P absorption cross sections of the JEDI-2P chromophore are the

same as for eGFP. While this assumption may not be exact, modest variations in these cross sections

will not change the conclusion that 2P voltage imaging requires 104-fold more power per cell.

First, we estimate the per-molecule excitation rate under 1P excitation. To achieve a per-cell de-

tected digital count rate of 1.5x107 s-1 (equivalent to 107 impinging photons/s), required a mean

per-cell laser power of 9.6×10-7 W, or equivalently an illumination intensity of∼1W/cm2 (Fig. 1;

assuming a HEK cell is approximately 10 μm diameter). This intensity is in the middle of the range

used for in vivo 1P voltage imaging: recordings of Voltron2 in flies used 200 – 1100 mW/cm2,44

while high-speed recordings of PV cells in mice used up to 14W/cm2.44

The decadal molar absorption coefficient of eGFP is ε = 45,000M-1 cm-1.166 The per-molecule

excitation rate is

Γ1P = Iε
λ
h c

103 ln 10
NA

,

where I (W/cm2) is the incident intensity, ε (M-1 cm-1) is the decadal molar absorption coeffi-

cient, λ (m) is the wavelength, h (6.63×10-34 J s) is Planck’s constant, c (3×108 m/s) is the speed of

light, and NA (6.02×1023 mol-1) is Avogadro’s number. We assume λ = 488 nm and find that at I =
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1W/cm2, Γ1P=430 s-1; at 10W/cm2, Γ1P=4300 s-1.

Assuming an overall 10% total light collection efficiency (reasonable for a high NA optical sys-

tem), 107 collected photons/s corresponds to 108 emitted photons/s. At a per-molecule emission

rate of 430 s-1, this implies 2.3×105 molecules/cell. At a typical HEK cell membrane surface area of

1000 μm2,167 the density of reporters is 230 μm-2.

We now estimate the 2P power needed to match the emitted count rate of 108 s-1. The probabil-

ity that a fluorophore is electronically excited by a single pulse from a 2P optical system is:55

P2P =
σ2P2avg
τ2Pf22P

(
[NA]2

2ℏcλ

)2

,

where σ2 is the 2P absorption cross section (m4 s), Pavg (W) is the time-average power from the

laser, τ2P (s) is the pulse duration, f2P is the laser repetition frequency, NA is the objective lens nu-

merical aperture, and ℏ, c, and λ are as above. The per-molecule rate of excitation is Γ2P = f2PP2P.

We assume parameters typical of a 2P imaging experiment: NA = 1, λ = 920 nm, τ2P = 200 fs, f2P

= 80MHz. The 2P absorption cross section of eGFP is σ2 = 39 GM (39×10-58 m4 s).166

The brightest signal from the cell arises when the laser focus intersects an equatorial membrane,

so the optical axis lies in the plane of the membrane, as in Fig. 4c. In this case the membrane area

that is optically excited is approximately A2P = w0b, where w0 is the waist of the Gaussian focus

and b is the depth of focus. The focus waist is approximately w0 = λ
2NA , and the depth of focus is

b = 2πw2
0n/λ, where n = 1.33 is the index of refraction. This estimate yields A2P ∼ 1 μm2, imply-

ing that∼230 reporter molecules are in the 2P focus. To achieve a total emitted photon rate of 108

s-1 then implies a per-molecule emission rate of �2P = 4.3×105 s-1. The time-average laser power to

achieve this count rate is 8 mW, 104-fold higher than the 1P power to achieve the same count rate.

In the minimal SNR limit of 2.5×105 detected photons/s/cell (corresponding to 2.5×106 emitted

photons/s/cell), the minimum time-average 2P power per cell is 0.4 mW (assuming φ = 1).
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