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Thermal fluctuations agitate molecules in solution over a broad
range of times and distances. By passively watching the shape
fluctuations of a thermally driven biomolecule, one can infer
properties of the underlying interactions that determine the mo-
tion. We applied this concept to single molecules of fluorescently
labeled A-DNA, a key model system for polymer physics. In contrast
to most other single-molecule DNA experiments, we examined the
unstretched, equilibrium state of DNA by using an anti-Brownian
electrokinetic trap to confine the center of mass of the DNA
without perturbing its internal dynamics. We analyze the long-
wavelength conformational normal modes, calculate their spring
constants, and measure linear and nonlinear couplings between
modes. The modes show strong signs of nonlinear hydrodynamics,
a feature of the underlying equations of polymer dynamics that
has not previously been reported and is neglected in the widely
used Rouse and Zimm approximations.

DNA dynamics | single molecule | hydrodynamic interactions |
polymer physics

he simplest model of a linear polymer is a chain of beads

joined by springs. In the Rouse model (1), each bead is a
Brownian diffuser with the same drag and diffusion coefficients
it would have in the absence of other beads. This model neglects
the fact that each bead is subject to the time-varying flow fields
produced by the other diffusing beads. This hydrodynamic
interaction (HI) renders the underlying dynamics nonlinear. The
Zimm model (2) includes hydrodynamics but restores linearity
through a mean-field approximation: each bead is made to
interact with the average conformation of its neighbors. Subse-
quent work has applied sophisticated mathematical techniques
to calculate corrections resulting from fluctuating hydrodynam-
ics (3-5), but the overall significance of internal HIs to polymer
dynamics remains unresolved (6).

The HI is the dominant long-range force for biomolecules in
aqueous buffers: it couples motion of one part of a molecule to
motion of possibly remote parts of the same molecule. Thus,
understanding HIs is crucial to understanding the rates of molec-
ular events that involve large-scale conformational change such as
folding of proteins and RNA, packaging of DNA, motion of
molecular motors, and motion of DNA-binding proteins.

Long before polymers were studied at the single-molecule level,
many clever experiments applied light scattering and neutron
scattering as indirect probes of polymer dynamics (7, 8). However,
these experiments were (i) limited to probing only the lowest one
or two internal relaxations and (i) only yielded second-order
ensemble-averaged correlation functions without measuring the
entire distribution of underlying states. This second property of
scattering techniques makes them insensitive to deviations from the
linearized Zimm theory.

Higgins and Benoit (9) and Quake et al. (10) used laser tweezers
to study the dynamics of partially extended DNA in solution yet
failed to find deviations from the Zimm theory. This negative result
is not surprising, because extending a molecule weakens the internal
HIs, rendering the nonlinearity harder to detect. Subsequent ex-
periments have probed DNA under a wide range of twists and
extensions (for reviews see refs. 11 and 12). In contrast, the
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equilibrium (i.e., unstretched) dynamics of single DNA molecules
have received relatively little attention (13-15) because of the
challenge of following a molecule as it diffuses away from the field
of view.

Experimental Method

Our experimental method consists of (i) acquiring a large number
of images showing the free-solution shape fluctuations of single
fluorescently labeled molecules of DNA [see supporting informa-
tion (SI) Movie 1]; (if) identifying the conformational normal
modes (analogous to the wavefunctions of an electron or the normal
modes of a drum); and (i) determining whether the dynamics in
these modes can be fit to a linear model, as required by the Zimm
theory. The observed deviations from Zimm theory verify that HI
effects are present in DNA and that HI may play an important role
in the dynamics of more complex biomolecular systems.

To study a single molecule in equilibrium, one would like to
eliminate the motion of the center of mass without affecting
internal motions. Active feedback provides a means to accomplish
this elimination. One tracks the Brownian motion of a molecule and
then imposes a body force that counteracts this motion. A variety
of schemes have been proposed (16-18) and implemented (19-22),
differing in the method of tracking and the source of the restoring
force. Here we apply our anti-Brownian electrokinetic (ABEL) trap
that uses video tracking and electrokinetic feedback and is capable
of trapping objects as small as individual proteins in solution (23).
The hardware and software have been described in detail (19, 20,
24, 25). In brief, the molecule to be trapped is confined to a thin
fluid layer [~1 wm thick, slightly larger than the radius of gyration
R, for A-DNA (=700 nm)] in a glass microfluidic cell. An auto-
mated video tracking system follows the Brownian displacements
(via fluorescence microscopy) and, for every frame, applies feed-
back voltages to the cell to induce an electrokinetic drift that
approximately cancels the Brownian motion. Motions at frequen-
cies higher than the update rate are not affected.

Molecules of double-stranded A-DNA fluorescently labeled with
YOYO-1 (Molecular Probes) were held in the ABEL trap, and a
two-dimensional projection of their conformational motions was
recorded with video microscopy at a time resolution of 4.5 ms per
frame. Twenty-one separate molecules were trapped, each for
between 9 and 18 s (yielding between 2,000 and 4,000 images per
molecule; total data set: 58,421 frames). Several frames showing the
shape fluctuations that are the focus of this article are shown in Fig.
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Shape fluctuations of A-DNA. (a) Series of images showing equilibrium conformational fluctuations of fluorescently labeled A-DNA. Here every eighth

image from the full movie provided in SI Movie 1 is shown. (Scale bar, 2 um.) (b) Experimentally determined first 16 PCs of conformational fluctuations, ordered
by their associated eigenvalues. Symmetry forbids the existence of (1, 1) modes (analogous to the 2p hydrogen wavefunctions), because amplitude in these modes
leads to a displacement of the center of mass. The color scale maps the most positive and most negative excursions to red and blue colors, respectively, and the
color corresponding to zero at the edges of the PCs varies from panel to panel. (Scale bar, 2 um.) (c) PCs predicted by a random-walk model. Because of the
rotational symmetry, experimental and theoretical eigenfunctions are often aligned along different axes. (d) Stiffness of 45 of the low-energy modes. All modes
with / # 0 are 2-fold degenerate. A random-walk model, taking into account finite imaging resolution, yields a similar spectrum of eigenvalues. AU, arbitrary

units. (e) Fraction of the total variance of the data accounted for by the first p modes. The first 34 modes account for 90% of the variance.

1a, with the full video given in SI Movie 1 along with details of data
analysis and calculations. The molecules were labeled with a
uniform density of fluorophores, so the fluorescence intensity at
each point in an image was proportional to the density of DNA
averaged over the point-spread function of the microscope at a
corresponding point in the sample.

An important question is whether the trapping feedback fields
affect the conformation or dynamics of the DNA. To test for such
interactions experimentally, we calculated the correlation between
the applied voltage and the measured shape of the molecule as
follows. Let I(r, f) be the intensity distribution (after removing
center-of-mass motion). Let (I(r, t)) be the time-average distribu-
tion and 8I(r, t) = I(r, t) — (I(r, t)) be the instantaneous deviation
from this average. The feedback voltages are V;, and V}. We found
that (Vi(t2)8I(x, t1)) ~ 0 and (Vy(t2)dI(r, t;)) ~ 0 to within the
experimental uncertainty for all £, #1, and r. Thus, coupling between
the feedback voltage and the conformation is small enough to be
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neglected here. This finding is consistent with the theoretical
argument that electrokinetic force and drag act uniformly along the
DNA backbone (26) and the experimental observation that the
free-solution mobility of DNA is independent of contour length or
conformation (27). We cannot rule out the possibility that higher-
order effects modify the conformation to a small extent, but our
current measurements are not sensitive to such perturbations.
Finite element simulations show that the electric field is homoge-
neous to within <0.1% over the size of the DNA molecule (25).

Another possible source of bias in the data is the finite z thickness
of the trapping region, which is only slightly larger than the radius
of gyration of A-DNA (1 pum vs. 700 nm). This confinement is
expected to have little effect on the distribution of states; excluded
volume interactions are very weak in A-DNA, so a modest con-
finement of the random walk in one dimension does not signifi-
cantly affect the random walks in the perpendicular dimensions.
This assumption is confirmed by the analysis below, which shows
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that the DNA shape is well described by a pure random walk. Of
greater concern is the impact of the walls of the trap on the
dynamics. The “no-slip” condition on the walls leads to a screening
of HI on a length scale of ~1 um. Thus, the HIs described below
will be slightly stronger in a truly three-dimensional polymer. The
diffusion coefficient of the center of mass of A-DNA in the ABEL
trap is 24% lower than in bulk (28). Internal HIs propagate over
shorter distances than does the disturbance generated by diffusion
of the center of mass. Thus, the perturbation to internal HI effects
is expected to be <24%.

Principal-Components Analysis

We now analyze the shapes of A-DNA, first considering only the
distribution of shapes and then the dynamics (i.e., how one shape
becomes another). How can one describe the variability among
the observed shapes without selecting an arbitrary descriptive
statistic as the quantity of interest? Principal-components anal-
ysis (PCA) provides a systematic expansion procedure for
coarse-graining over atomic degrees of freedom while preserv-
ing the large-distance dynamics that are relevant for many
functions. Furthermore, PCA is unbiased in the sense that it uses
the data to determine the characteristic motions without requir-
ing the experimenter to specify a model of the underlying
process.

The process of PCA consists of (i) obtaining the covariance
matrix for some randomly fluctuating N-dimensional quantity and
(if) calculating the eigenvectors of this covariance matrix. The
eigenvectors with the largest eigenvalues are called the principal
components (PCs). The PCs are an efficient basis in that if the
fluctuations of the system are Gaussian, then projection of the
dynamics onto the first m eigenvectors (ranked by descending
eigenvalue) accounts for a larger fraction of the total variance than
would a projection onto any other basis with m elements.

There are two approaches to PCA on a material system, which,
in analogy to fluid dynamics, we call the Lagrangian and
Eulerian approaches. In Lagrangian fluid dynamics, one follows
the trajectories of distinct fluid elements (imagine tracer parti-
cles) as a function of time. In Eulerian fluid dynamics, one
calculates fluid properties (e.g., pressure, velocity, shear) as a
function of position in some fixed reference frame. The Eulerian
approach leads to the well known Navier—Stokes equations and
is generally preferred because of its simplicity. The Eulerian
approach takes advantage of a symmetry of the fluid (i.e., that
all elements of the fluid are identical), so there is no need to
follow a particular fluid element (29).

A similar situation prevails when one wishes to perform PCA on
the fluctuations of a material body. There are two ways one
can construct the covariance matrix. One can follow the trajec-
tory x;(¢) of mass element i and calculate covariance matrices such
as C(i, j, ) = i(t)x;(t + 7)). This approach is necessary when
considering a multicomponent system such as a protein, in which
two elements i and j may not be interchangeable (e.g., they have
different chemical properties). We call this the Lagrangian ap-
proach. For a homogeneous system, however, one can adopt a
reduced description, considering only the density p(x). Then, one
can calculate covariance matrices such as C(x1, x2, 7) = {p(x1, ) p(x2,
t + 7)). We call this the Eulerian approach.

Starting with the pioneering work of Karplus and Kushick (30),
PCA has been widely applied to analyze molecular dynamics
trajectories, but always in the Lagrangian perspective. Such an
approach is productive, because the secondary structure of proteins
is fairly rigid, so many motions involve entire domains. For a review
of PCA of proteins, see refs. 31 and 32. The standard Rouse and
Zimm models of polymer dynamics are also developed in the
Lagrangian language (following every mass element). Indeed,
performing PCA on a random walk in the Lagrangian perspective
yields precisely the Rouse polymer modes.
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For determining many dynamical properties of polymers, only
the density distribution is needed. The present experiments are not
sensitive to the underlying sequence of base pairs, so we approxi-
mate the DNA as a homogeneous polymer. Furthermore, we do not
know which piece of the polymer contributes to each piece of the
image. Thus, it is most appropriate to perform PCA in the Eulerian
perspective.

We performed PCA (33) on 58,421 video images of DNA to
identify spatially separated parts of the DNA that fluctuate in
synchrony (see SI Appendix). Fig. 1b shows the first 16 PCs for
A-DNA. Starting at the upper left, the dominant PC is a radial
breathing mode, followed by a pair of degenerate modes in which
the molecule stretches along one axis and contracts along an
orthogonal axis, followed by more complex deformations. Each PC
is indexed by (n, ), where n is the number of radial nodes, and / is
the number of azimuthal nodes. PCA implies a picture of the
molecule as a gel-like solid with a spectrum of long-wavelength
collective motions.

Each PC has associated with it an eigenvalue, A, that is equal to
the fraction of the variance of the entire data set that falls along the
PC. The equipartition theorem implies that Y5k,A, = Y2kgT, where
kg is the Boltzmann constant, and 7 is the temperature, from which
one can extract the stiffness, k,, of mode p. The persistence length
is much less than our optical resolution, so the stiffness is entirely
caused by the entropic cost of deforming the molecule. The
stiffnesses of the first 45 PCs (shown in Fig. 1d) follow an unex-
plained semiregular pattern. The PCs and the spectrum of eigen-
values appear qualitatively similar to atomic wavefunctions and
energy levels familiar from quantum mechanics, but the details of
the shape and the underlying equations are completely different.

Use of the PCs achieves a large reduction in the amount of data
required to describe the conformational fluctuations compared
with the raw images. Although each image contains 1,024 pixels,
90% of the variance in the data set is contained in the first 34 PCs
(Fig. 1le). The remaining variance is mostly caused by measurement
noise. By working in the PC basis, we suggest that numerical
simulations of polymer dynamics could be rendered more efficient.
Rather than simulating the trajectory of each mass element, one
could simulate the dynamics of the PCs. This approach would only
be beneficial for studying near-equilibrium fluctuations; otherwise
the PCs cease to be an efficient basis.

PCs of a Random Walk

Here we develop a semianalytical description of the observed
PCs. As a minimal model we assume that each image recorded
by the camera shows a pure two-dimensional random walk. In
this section we derive the PCs of a d-dimensional random walk
with a fixed center of mass. Although these results are presented
in the context of polymer physics, a coarse-grained description
of the shapes of random walks may prove useful in other
disciplines as well.

Consider a one-dimensional random walk of N Gaussian steps
joining n + 1 mass elements, each step of variance a. We will work
in the limit of large N and small a, keeping Na? = 1, and keeping
the center of mass of the walk fixed at the origin. We think of the
polymer as a density distribution p(x). In the Eulerian perspective,
the covariance matrix depends on fluctuations about the mean
density distribution, {p(x)), so we start by discussing this distribution.

The mean distribution of density about the center of mass of
a random walk is not Gaussian (34). Each segment obeys a
Gaussian density distribution about the center of mass, but the
width of this distribution varies along the chain: the ends wander
further than the middle. The total density distribution is the sum
of many Gaussian distributions of distinct widths and, thus, is not
a Gaussian distribution. Yamakawa (34) showed that the total
density distribution is
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This function looks qualitatively like a Gaussian distribution
near x = 0 but has fat tails relative to a Gaussian distribution. For
a multidimensional Gaussian random walk, the displacements
along orthogonal axes are statistically independent, so the total
probability density is the product of the one-dimensional prob-
ability densities along each of the axes. We previously showed
that Eq. 1 agrees well with the observed density distribution of
A-DNA, whereas a Gaussian distribution does not (28).

Now we calculate the density—density covariance of an ensemble
of one-dimensional random walks in the Eulerian perspective. The
covariance matrix is

Clxy, x2) = (p(x1)p(x2)) — {p(x1)Xp(x2)) [3]

The second term on the right-hand side of Eq. 3 is obtained from
Eq. 1. The challenging task is to calculate the first term,

(p(x1)p(x2)).
If we assume that each piece of the random walk contributes a
point-like density, the density at position x; is

px) = X 8(xy — x,),

a=0

where « is an index of the mass elements. The product of the
densities at two positions is

ple)p(es) = 2 8(x; — x,)8(xs — xp).
a,B=0

We take the Fourier transforms of the above equation with
respect to x; and x; to obtain

N

p(k)p(ks) = E expli(kx, + koxpg)].
@,B=0

The position of mass element « is then expanded in Rouse
modes as

z o
Xo = Zc,,cos( N )

v=1

and similarly for xg. Leaving out the » = 0 term guarantees that
the center of mass remains fixed at x = 0 (i.e., Z,x, = 0 for all
{c,}). Thus, we have

N o

e 4es TV,

p(k)p(k,) = E exp[i 2 cv(klcos(N) + kzcos(NB)ﬂ.
a,B=0 v=1

The coefficients ¢, are Gaussian distributed and statistically

independent, with {c,c,) = 1/(7v)?$,,. After taking the average
over all conformations (i.e., all {c,}), we obtain
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a,B=0

[4]
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The next challenge is to evaluate the sum

- 2
5 ol rel )

v=1

A similar sum appears in the theory of scattering from polymer
solutions (35), but in that case the sum depends on only one k
variable. Eq. 4 becomes the formula for the static structure factor
when k, = —ky. This difference arises because scattering exper-
iments always probe spatially averaged quantities. Direct imag-
ing experiments, on the other hand, allow us to compare
fluctuations at pairs of distinct points, x; and x», or alternatively
at distinct k vectors, k1 and k.

When k; = —k, the sum in Eq. 5 evaluates to § = k%l:bz — B2
(35). In the more general case where k; and k; vary independently,
the sum evaluates to

§= 113 [2k3F (o) + 2k3F (B) + k1k2G (e, B)], (6]

where F(+) is as defined in Eq. 2, and

B o B 2 a B 2
G(a’B):3<1T]+N_1> +3<‘1T]_N‘ —1> - 2.

Substituting Eq. 6 into Eq. 4 and taking the inverse Fourier
transform yields

N

(peplr)) = 2,

a,B=0

6
716F(a)F(B) — G(a, B)?

[ — 24F(B)x] — 24F(a)x3 + 12G(a, B)xlxz]
X 16F(a)F(B) — G(a, B)> :

[71

Eq. 7 is the fundamental result of this section. It gives the joint
probability of two pieces of the random walk being at positions x;
and x,, with the center of mass at the origin. Unfortunately, the sum
over « and B must be evaluated numerically. In d dimensions, the
fluctuations along orthogonal axes are statistically independent, so
the total probability density is the product of the one-dimensional
probability densities along each of the axes.

We evaluated the two-dimensional version of Eq. 7, where r; and
r; each were selected from a 32 X 32 grid, to obtain the density—
density covariance matrix for two-dimensional random walks. This
covariance matrix was diagonalized numerically, and Fig. 1 c—¢
shows a comparison between the experimental and theoretical PCs
and eigenvalues. To improve the correspondence between the
theoretical and experimental eigenvalues we added to the model
the effect of finite imaging resolution. The analytical PCs were
convolved with a Gaussian distribution, and the analytical eigen-
values were then multiplied by the ensuing decrease in mean-square
amplitude of the corresponding eigenvectors. This procedure led to
good correspondence between the theoretical and experimental
eigenvalues. At present it is not clear whether the remaining
differences arise from noise in the data or from a physical process
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Linear and nonlinear dynamics of the PCs. (a) Covariance matrix of amplitudes in the first 15 PCs at = = 18 ms. The off-diagonal elements indicate that

the PCs are not eigenstates of the time-evolution operator. The only significant transitions conserve / (i.e., are vertical on Fig. 1d) and change n by = 1. (b)
Power-law scaling of the relaxation times in the first 45 PCs. The relaxation time was extracted from the short-time autocorrelation of the mode amplitudes. (c)
Nonlinear couplings in the first 5 PCs. Each correlation function 5&)() in the 5 X 5 array probes the effect of amplitude in mode aqonthe magnitude of the thermal

Ppq

fluctuations gﬁ. Strong nonlinear interactions are shaded pink, and weak ones are in blue. Each black line is the calculation for a single molecule of A-DNA, and
the red lines are the ensemble average. Each box has a time axis of 7 = (—450, 450 ms) and a vertical axis ﬁgg =(—0.1, 0.3). A table of values of ,3},3;(0) is provided

in SI Appendiix.

in the DNA (such as excluded volume) that has been left out of the
model.

Dynamics of the PCs

The PCA is only sensitive to shape deformations that occur
within the same video frame, so it provides no information on the
dynamics (i.e., how a fluctuation at one time impacts the
fluctuations at a later time). If the video images of the DNA were
randomly reordered, the results of PCA would not change. To
obtain a more detailed picture of the dynamics, we decomposed
each image into the basis of PCs and examined the time
dependence of the mode amplitudes, a,(t).

The amplitude in each PC ebbs and flows stochastically as
thermal fluctuations and viscous damping add and remove
energy. The most general second-order quantity characterizing
these dynamics is the time-dependent covariance matrix,
Ppg(T) = {ap(t + T)a,(t)), where the indices p and g may be
truncated (16) at a small value (e.g., 15 in Fig. 2a). If the PCs
were also the eigenstates of time evolution, then p,,(7) would be
diagonal for all . However, Fig. 2a shows that off-diagonal terms
arise. The only significant off-diagonal elements connect mode
p = (n = 1,]) to mode g = (n, [), suggesting that conservation
of azimuthal mode number is a selection rule for DNA confor-
mational transitions. That is, only vertical transitions are allowed
on the plot in Fig. 1d. This selection rule for DNA conforma-
tional transitions implies that the interaction that causes tran-
sitions has radial symmetry. We are not aware of a detailed
explanation for this phenomenon, but it is physically plausible
that the molecule, once extended with a particular number of
azimuthal nodes, must contract back to a more compact object
before it can extend out into a conformation with a different
number of azimuthal nodes.

The autocorrelations of the PC amplitudes [i.e., the diagonal
elements p,,(7)] show nonexponential decay in time, a phenomenon
due partially to the mode-mixing shown in Fig. 2a and partially to
the nonlinear interaction discussed below. Nonetheless, a charac-
teristic relaxation time can be associated with each PC by examining
its slope near zero time lag by using the formula

l _ 1 ﬁpp(l) B ﬁpp(z)
T, ot prp(1) ’

The values of p,, at lags 1 and 2 were used here (rather than at
lags 0 and 1) to avoid contaminations from shot noise and other
é-correlated noise sources. These relaxation times are shown in

12626 | www.pnas.org/cgi/doi/10.1073/pnas.0610396104

Fig. 2b and are well fit by a power-law 7, ~ p%, with « = —0.55 =
0.05 (95% confidence interval).

Why do the relaxation times of the PC modes scale like 7, ~ p~12
while the relaxation times of the Zimm modes scale like p~32? In
the Zimm model, the modes are sinusoids, like the vibrations of a
violin string, with a characteristic wavevector k, ~ p. Zimm showed
that a fluctuation with a wavevector of k has a relaxation time 7 ~
k=32, In the PC model the fundamental motions are those of a
three-dimensional spherically symmetric elastic continuum. In &
space, the number of modes with a wavevector less than & in
magnitude scales as p ~ k3, and so the pth mode will have a
wavevector k, ~ p'3. The relation T ~ k32 still applies, whence 1,
~ p~ 12, Thus, the essential difference between the Zimm and PC
models is that the Zimm model deals with the vibrations of a
one-dimensional string, whereas the PC model deals with the
vibrations of a three-dimensional elastic continuum.

Now we quantify nonlinear interactions between the modes. The
approach is to fit a linear model to the dynamics and then to look
for higher-order correlations among the residuals. If the time
evolution of the system were linear and Markovian (as required by
both the Rouse and Zimm models), then the vector of amplitudes
in each eigenstate would evolve according to a Langevin equation,

a(k + 1) = Ma(k) + &k), [8]

where M is a transition matrix, & is a vector of Gaussian white
noise describing the effect of thermal fluctuations, and k is the
frame index (¢t = két) (see SI Appendix). We considered only the
first 15 eigenvectors and estimated the elements of M by a
least-squares fit to the data. The time series of the residuals §(k)
was examined for signs of nonlinear dynamics. For example, a
conformation-dependent internal friction would lead to a non-
zero value of the third-order correlation function:

2
S0ay = (B0 + Das0) o
P var(§,)var(a,)"/
This correlation function characterizes the effect of amplitude in
mode g affecting the friction (and hence the thermal fluctuations
§) in mode p. Fig. 2¢ shows that for several p and g, ﬁ(;,;('r) # 0,
indicating that the ansatz of Eq. 8 is only approximately true.
Excitation in the (1, 0) mode leads to the largest nonlinear
effects, strongly affecting the dynamics in the mode (1, 0) itself
as well as the two (2, 1) modes and weakly affecting the dynamics
in the two (1, 2) modes. Details of the calculation are given in
SI Appendix. These nonzero correlations show that the intrinsic
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nonlinear couplings in the DNA-shape dynamics are directly
observable in our measurements. These effects are not predicted
by the linearized Zimm model and cannot be detected by
traditional scattering techniques.

We have shown that active trapping of single molecules of
DNA in the ABEL trap provides rich dynamical information
about the shapes and fluctuations of the molecules. The results
presented here serve as a benchmark against which to test
analytical theories and numerical simulations of polymer
dynamics. The selection rules for conformational transitions
(Fig. 2a) and the pattern of nonlinear coupling between modes
(Fig. 2c) both await theoretical explanation.

In our analysis we found strong signs of dynamic internal
interactions (forces depending on the relative motion of chain
elements) but not of static internal interactions (forces depending
on the relative position of chain elements). We justified neglect of
static interactions on the basis of the good agreement between the
PCA eigenstates of the data and those of a pure random walk. The
appearance of features that resemble condensed globules, or pearls,
in the movies is, we believe, an artifact of the finite resolution of the
imaging; all features smaller than a diffraction-limited cutoff take
on a globular appearance. The possibility remains that PCA is
particularly insensitive to the effects of static interactions and that
a different statistical description would be preferable. Such static
interactions could arise from solvent-induced attraction, electro-
static repulsion, or excluded volume. However, the present exper-
iment was performed under “good-solvent” conditions, for which
the DNA is expected to adopt a random coil conformation.

It will be interesting to see how the descriptive statistics presented
here change when a trapped molecule of DNA is subjected to
physical and chemical perturbations, such as changes in pH, tem-
perature, ionic strength, or the addition of proteins that interact
with DNA. In particular, it would be interesting to add condensing
agents to study the dynamics of the coil-to-globule transition (36),
which is a topic of much interest for polyelectrolytes (37). One may
also use more complex labeling schemes, such as labeling the ends
of the polymer with a different color from the center. We hope that
our experiments on DNA will spur efforts toward a better under-
standing of the role of HIs in biomolecular processes.

Materials and Methods

DNA Preparation. Double-stranded A phage DNA (Molecular
Probes) was dissolved in a buffer of 10 mM Tris'HCI, 10 mM Na(l,
and 1 mM EDTA (pH 8.0). The fluorescent dye YOYO-1 (Mo-
lecular Probes) was added at a concentration of 1 dye/10 bp of
DNA, and the mixture was incubated at room temperature in the
dark for 30 min. An oxygen-scavenger system of glucose (4.5
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mg/ml), glucose oxidase (0.43 mg/ml), catalase (72 pg/ml), and
2-mercaptoethanol (5 ul/ml) was added to the solution to reduce
photobleaching. An antiadsorption polymer (POP-6, without de-
naturant, Applied Biosystems) was added at a concentration of 10%
to prevent DNA sticking to the walls of the cell. The molecules were
excited at 488 nm, and fluorescence was collected through a
495-nm-long pass filter. Under the experimental conditions,
A-DNA has a persistence length of /, ~ 60 nm and a contour length
of L ~ 20 um.

Image Acquisition and Preprocessing. The ABEL trap cell was placed
on an inverted optical microscope (TE300, Nikon), and epifluo-
rescence images were acquired by using an oil-immersion objective
with a numerical aperture of 1.3. The video images were formatted
for data analysis as follows. Each frame was 32 X 32 pixels, with a
pixel width corresponding to 118 nm in the sample plane. The small
image size was chosen to allow a fast frame rate on the electron-
multiplying CCD camera (Cascade 512B, Roper Scientific, Tren-
ton, NJ). A background image (acquired under identical conditions
to the data except with no DNA in the field of view) was subtracted
from each frame. In a small fraction of the frames (=5%), a second
DNA molecule was seen floating through the field of view. In these
frames, the pixels affected by the second molecule were manually
set to the background level. Images were shifted to remove residual
center-of-mass fluctuations uncompensated by the ABEL trap by
using a bicubic interpolation to localize the center of mass to less
than the pixel size. The total intensity of each frame was normalized
to account for the slow rate of photobleaching of the YOYO-1
during the trapping period. For the present analysis, the data from
all 21 molecules was aggregated except for the third-order corre-
lation functions in Fig. 2c.

The 1,024 X 1,024 equal-time covariance matrix, C(x; x;), was
numerically diagonalized in Matlab (Mathworks, Natick, MA). The
eigenvectors with the largest eigenvalues were converted to 32 X 32
images. Eigenvectors 11-14 are nearly degenerate and arrived
mixed together because of the presence of statistical noise in the
covariance matrix. The space of four-dimensional rotations among
these eigenvectors was manually searched to find linear combina-
tions that had manifest symmetry. These linear combinations were
taken to be the “true” eigenvectors.
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